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Chapter 1

Introduction

This Master thesis is the result of some months of work under the supervision of

Sébastien Boucksom, to whom I am very grateful.

This thesis is divided into three Chapters:

The first chapter is devoted to the introduction of some basics of Kahler Geometry;

here we establish notations, and we give some results that will be employed at a later

stage.

In the second chapter we discuss the notion of line bundles over a complex mani-

fold, and we introduce the basic differential geometric notions required for the state-

ment of the main results.

In the last chapter, we introduce the concept of plurisubharmonic function that

will be an essential tool for employing measure theory and functional analysis tech-

niques in Complex Geometry, which is the main core of the thesis. Using these

techniques we prove a strong Cohomlogy vanishing theorem (Theorem 3.25) first,

and then the celebrated Kodaira Embedding Theorem.

The Kodaira Embedding Theorem, is an important theorem in Complex Ge-

ometry/Complex Algebraic Geometry. It provides a link between the differential-

geometric concept of positive line bundle and the algebro-geometric notion of ample-

ness for a line bundle.

The Kodaira Embedding Theorem also gives an answer to a natural question that

arises in Complex Geometry: When is a compact complex manifold, 𝑋, projective?,
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that is, when does there exist an embedding of 𝑋 into a complex projective space?

In order to illustrate the beauty and power of this theorem, let’s assume the

Kodaira Embedding Theorem and let us prove a simple corollary which gives an

answer to the previous question.

Theorem 1.1. If 𝑋 is a compact complex manifold that admits a Kahler metric in

𝐻2(𝑋,Z), then 𝑋 is projective.

Proof. If 𝜔 is such a metric, then by the holomorphic exponential sequence

0 Z 𝒪 𝒪* 0𝑖 exp
(1.1)

we have the cohomology long exact sequence

· · · 𝐻1(𝑋,𝒪*) 𝐻2(𝑋,Z) 𝐻2(𝑋,𝒪) ∼= 𝐻0,2(𝑋,C) · · ·𝑠 𝑟 (1.2)

One can prove that the morphism 𝑟 is exactly the the degree morphism, and therefore

since 𝜔 is Kahler, in particular 1, 1, we have that 𝑟(𝜔) = 0. Hence 𝜔 ∈ Im(𝑠), which

implies that there exists 𝐿 a holomorphic line bundle over𝑋 such that 𝑠(𝐿) = 𝑐1(𝐿) =

𝜔.

We conclude that 𝐿 is a positive line bundle and 𝑋 is projective by the Kodaira

Embedding theorem.

1.1 Basic Kähler Geometry

Let C be the field of complex numbers 𝑧 = 𝑥 + 𝑖𝑦. And C𝑛 denote the coordinate

space of the 𝑛-tuples of complex numbers 𝑧 = (𝑧1, . . . , 𝑧𝑛). If 𝑈 ⊂ C𝑘 is open, we say

that a mapping 𝑓 : 𝑈 → C𝑛 is smooth if 𝜕𝐼,𝐽𝑓
𝜕𝑥𝐼𝜕𝑦𝐽

exists and is continuous for every 𝐼

and 𝐽 .

In these notes 𝒜𝑘(𝑋) = 𝐶∞(𝑋,
⋀︀𝑘 𝑇 *𝑋) will denote the smooth 𝑘-differential

forms.
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Let (𝑋, 𝐽) be a complex manifold, and 𝑔 a Riemannian metric on 𝑋. We say that

𝑔 is compatible with the complex structure if 𝑔 is 𝐽-invariant. If 𝑔 is compatible with

𝐽 , then we say that (𝑋, 𝐽, 𝑔) is Kähler manifold when

∇𝐽 = 0 (1.3)

where ∇ is the Levi-Civita connection on 𝑋.

Remark 1.2. The Kähler condition (1.3) is equivalent to 𝐽 commuting with parallel

transport.

Since in a real Riemannian manifold homoteties commute with parallel transport,

it is natural to ask the same for the complex case.

Associated to a compatible metric, 𝑔, we have a differential form 𝜔𝑔, defined by

𝜔𝑔(𝑋, 𝑌 )
.
= −𝑔(𝑋, 𝐽𝑌 ) = 𝑔(𝐽𝑋, 𝑌 )

Theorem 1.3. Given a complex manifold (𝑋, 𝐽) endowed with a compatible Rieman-

nian metric 𝑔, (𝑋, 𝐽, 𝑔) is Kähler if, and only if, 𝜔𝑔 is closed

Proof. A direct computation of 𝑑𝜔𝑔 shows that the following identity holds:

𝑑𝜔𝑔(𝑋0, 𝑋1, 𝑋2) = 𝑔
(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
+ 𝑔

(︀
(∇𝑋1𝐽)𝑋2, 𝑋0

)︀
+ 𝑔

(︀
(∇𝑋2𝐽)𝑋0, 𝑋1

)︀
.

This computation is made easier assuming1 that 𝑋0, 𝑋1, 𝑋2, 𝐽𝑋1 and 𝐽𝑋2 commute.

Note that from this equality we obtain easily that if 𝐽 is parallel, i.e., if (𝑋, 𝑔, 𝐽) is

Kähler, then 𝜔𝑔 is closed. We then have:

𝑔
(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
= 𝑔

(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
− 𝑔

(︀
𝐽(∇𝑋0𝑋1), 𝑋2

)︀
= 𝑔

(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
+ 𝑔

(︀
(∇𝑋0𝑋1), 𝐽𝑋2

)︀
.

1One can always assume this on a complex manifold.
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Using Koszul’s formula, we get:

2𝑔
(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
= 𝑋0

(︀
𝑔(𝐽𝑋1, 𝑋2)

)︀
+ (𝐽𝑋1)

(︀
𝑔(𝑋0, 𝑋2)

)︀
−𝑋2

(︀
𝑔(𝑋0, 𝐽𝑋1)

)︀
= 𝑋0

(︀
𝜔𝑔(𝑋1, 𝑋2)

)︀
− (𝐽𝑋1)

(︀
𝜔𝑔(𝐽𝑋2, 𝑋0)

)︀
+𝑋2

(︀
𝜔𝑔(𝑋0, 𝑋1)

)︀
,

and

2𝑔
(︀
∇𝑋0𝐽𝑋1, 𝐽𝑋2

)︀
= 𝑋0

(︀
𝑔(𝑋1, 𝐽𝑋2)

)︀
+𝑋1

(︀
𝑔(𝑋0, 𝐽𝑋2)

)︀
− (𝐽𝑋2)

(︀
𝑔(𝑋0, 𝑋1)

)︀
= −𝑋0

(︀
𝜔𝑔(𝐽𝑋1, 𝐽𝑋2)

)︀
+𝑋1

(︀
𝜔𝑔(𝑋2, 𝑋0)

)︀
− (𝐽𝑋2)

(︀
𝜔𝑔(𝑋0, 𝐽𝑋1)

)︀
.

Combining all the above identities we finally obtain:

2𝑔
(︀
(∇𝑋0𝐽)𝑋1, 𝑋2

)︀
= 𝑑𝜔𝑔(𝑋0, 𝑋1, 𝑋2) − 𝑑𝜔(𝑋0, 𝐽𝑋1, 𝐽𝑋2),

which proves that if 𝜔𝑔 is closed, then 𝐽 is parallel, i.e., (𝑋, 𝑔, 𝐽) is Kähler.

1.1.1 Some Riemannian Geometry

Let (𝑀, 𝑔) be a Riemannian manifold of even dimension2. Observe that for all 𝑝 ∈𝑀 ,

𝑔𝑝 induces a scalar product on 𝑇 *
𝑝𝑀 . Indeed, 𝑔𝑝 can be seen as a liner isomorphism

♭ : 𝑇𝑝𝑀 → 𝑇 *
𝑝𝑀

𝑣 ↦→ 𝑔𝑝(𝑣, ·)
.
= 𝑣♭

we define in 𝑇𝑝𝑀
* the sacalr product given by the push-forward ♭*(𝑔𝑝). We will denote

this scalar product by 𝑔𝑝 as well.

The mapping inverse to ♭ will be denoted by ♯ .

More generally, 𝑔𝑝 induces a scalar product in Λ𝑘𝑇 *
𝑝𝑀 . We define

𝑔(𝛽1 ∧ · · · ∧ 𝛽𝑘, 𝛼1 ∧ · · · ∧ 𝛼𝑘)
.
= det

(︀
𝑔(𝛽𝑖, 𝛼𝑗)

)︀
,

2The evenness of dimension is not really needed, but it will make some sign computations easier.
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and by linearity extend to Λ𝑘𝑇 *
𝑝𝑀 . If 𝜉1, . . . , 𝜉𝑛 ∈ 𝑇 *𝑀 are orthonormal, and letting

𝐼 = {𝑖1 < · · · < 𝑖𝑘}, 𝐽 = {𝑗1 < · · · < 𝑗𝑛−𝑘} we have that

𝑔(𝜉𝑖1 ∧ . . . 𝜉𝑖𝑘 , 𝜉𝑗1 ∧ · · · ∧ 𝜉𝑗𝑘) = 𝛿𝐽𝐼 (1.4)

We’ll define an operator from 𝐶∞(
⋀︀𝑘 𝑇 *𝑀) e 𝐶∞(

⋀︀𝑛−𝑘 𝑇 *𝑀): the Hodge star

operator.

Let 𝛽 ∈ 𝐶∞(
⋀︀𝑘 𝑇 *𝑀) define

𝜙𝛽 :
𝑛−𝑘⋀︁

𝑇 *
𝑝𝑀 −→ R

such that 𝜙𝛽(𝛼) = 𝑔(𝛽 ∧ 𝛼, 𝑑𝑉𝑔). By Riesz representation theorem there exists a

unique element, *𝛽 ∈
⋀︀𝑛−𝑘 𝑇 *

𝑝𝑀 , such that

𝑔(𝛽 ∧ 𝛼, 𝑑𝑉𝑔) = 𝜙𝛽(𝛼) = 𝑔(𝛼, *𝛽)

.

Since 𝛽 ↦→ *𝛽 is a linear function from
⋀︀𝑘 𝑇 *

𝑝𝑀 to
⋀︀𝑛−𝑘 𝑇 *

𝑝𝑀 , it induces a 𝐶∞-

linear function 𝐶∞(
⋀︀𝑘 𝑇 *𝑀) → 𝐶∞(

⋀︀𝑛−𝑘 𝑇 *𝑀)

* : 𝛽 ↦→ *𝛽

Definition 1.4. The operatir above

* : 𝐶∞(
𝑘⋀︁
𝑇 *𝑀) → 𝐶∞(

𝑛−𝑘⋀︁
𝑇 *𝑀)

is the Hodge star operator.

Let 𝜉1, . . . , 𝜉𝑛 ∈ 𝑇 *
𝑝𝑀 be a positively oriented basis.

Lemma 1.5. The Hodge star is given by

*(𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘) = 𝜉𝑗1 ∧ · · · ∧ 𝜉𝑗𝑛−𝑘
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with 𝜉𝑖1 ∧ . . . 𝜉𝑖𝑘 ∧ 𝜉𝑗1 ∧ · · · ∧ 𝜉𝑗𝑛−𝑘
= (𝑑𝑉𝑔)𝑝

Proof. By (1.4) we have that

*(𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘) =
∑︁
𝐿

𝑔(*(𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘), 𝜉𝑙1 ∧ . . . 𝜉𝑙𝑛−𝑘
)𝜉𝑙1 ∧ · · · ∧ 𝜉𝑙𝑛−𝑘

=
∑︁
𝐿

𝑔(𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘 ∧ 𝜉𝑙1 ∧ · · · ∧ 𝜉𝑙𝑛−𝑘
, 𝑑𝑉𝑔)𝜉𝑙1 ∧ · · · ∧ 𝜉𝑙𝑛−𝑘

= 𝑔(𝜉𝑖1 ∧ · · · ∧ 𝜉𝑖𝑘 ∧ 𝜉𝑚1 ∧ · · · ∧ 𝜉𝑚𝑛−𝑘
, 𝑑𝑉𝑔)𝜉𝑚1 ∧ · · · ∧ 𝜉𝑚𝑛−𝑘

= 𝑔(sgn(𝜎)𝑑𝑉𝑔, 𝑑𝑉𝑔)𝜉𝑚1 ∧ · · · ∧ 𝜉𝑚𝑛−𝑘

= sgn(𝜎)𝜉𝑚1 ∧ · · · ∧ 𝜉𝑚𝑛−𝑘

= 𝜉𝑗1 ∧ · · · ∧ 𝜉𝑗𝑛−𝑘

Where 𝐿 runs through the 𝑛−𝑘-multi-indexes, {𝑚1, . . . ,𝑚𝑛−𝑘} are the indices {𝑗1, . . . , 𝑗𝑛−𝑘}

ordered, and 𝜎 the permutation associated to this ordering.

The above lemma allow us to compute *-operator easily. One first consequence of

this formula is

** = (−1)𝑘Id

Which we get by a simple computation.

Corollary 1.6. 𝑔(𝛽, 𝛼)𝑑𝑉𝑔 = 𝛽 ∧ *𝛼

Proof.

𝑔(𝛽, 𝛼) =(−1)𝑘𝑔(𝛽, **𝛼)

=(−1)𝑘𝑔(*𝛼 ∧ 𝜔, 𝑑𝑉𝑔)

=𝑔(𝛽 ∧ *𝛼, 𝑑𝑉𝑔)

=⇒ 𝑔(𝛽, 𝛼)𝑑𝑉𝑔 = 𝛽 ∧ *𝛼

A metric in𝑀 induces a scalar product
⋀︀𝑘 𝑇 *

𝑝𝑀 for every 𝑝 ∈𝑀 . Moreover, with

these scalar products we can define a global scalar product on the differential forms,
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𝐶∞(
⋀︀𝑘 𝑇 *𝑀), integrating over 𝑀 . If 𝛽, 𝛼 ∈ 𝐶∞(

⋀︀𝑘 𝑇 *𝑀) we define

⟨𝛽, 𝛼⟩ .=
∫︁
𝑀

𝑔(𝛽, 𝛼)𝑑𝑉𝑔 =

∫︁
𝑀

𝛽 ∧ *𝛼

We say that ⟨−,−⟩ is the Hodge scalar product, and we denote by ‖−‖ the associated

norm.

Therefore, if 𝛽 ∈ 𝐶∞(
⋀︀𝑘 𝑇 *𝑀) and 𝜂 ∈ 𝐶∞(

⋀︀𝑘+1 𝑇 *𝑀) the following computa-

tion holds:

⟨𝑑𝛽, 𝜂⟩ =

∫︁
𝑀

𝑑𝛽 ∧ *𝜂

=

∫︁
𝑀

𝑑(𝛽 ∧ *𝜂) −
∫︁
𝑀

(−1)𝑘𝛽 ∧ 𝑑(*𝜂)

= 0 + (−1)𝑘+1

∫︁
𝑀

𝛽 ∧ 𝑑(*𝜂)

= (−1)𝑘+1(−1)𝑘
∫︁
𝑀

𝛽 ∧ * * 𝑑(*𝜂)

= −
∫︁
𝑀

𝛽 ∧ *(*𝑑(*𝜂))

= −⟨𝛽, *𝑑(*𝜂)⟩

We define 𝑑* = 𝛿
.
= − * 𝑑*, so we have that

⟨𝛼, 𝑑𝛽⟩ = ⟨𝑑*𝛼, 𝛽⟩

1.1.2 Back To Kähler

In the last section everything was done to a Riemannian manifold. For a Kähler

manifold, we will extend the Hodge star operator, *, to be C-linear in 𝑇 *𝑋⊗C .
= 𝑇 *

C𝑋.

In this way, we will have that for 𝑣 ∈ 𝑇 *𝑋 = 𝑇 *𝑋1,0

*𝑣 = *𝑣

And analogous results to the ones presented will be true for the Kähler case.
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For instance, we can also define 𝜕*
.
= − * 𝜕 * and 𝜕

* .
= − * 𝜕 *, we have

⟨𝛼, 𝜕 𝛽⟩ = ⟨𝜕* 𝛼, 𝛽⟩ and ⟨𝛼, 𝜕 𝛽⟩ = ⟨𝜕* 𝛼, 𝛽⟩ (1.5)

The proof is just as in the 𝑑 case, with one key observation that if 𝛼 ∈ 𝐶∞(
⋀︀𝑛−1 𝑇 *𝑋),

where dimC𝑋 = 𝑛, we have

∫︁
𝑋

𝜕 𝛼 = 0 =

∫︁
𝑋

𝜕 𝛼 (1.6)

Indeed, if 𝛼 = 𝛼1+𝛼2, where 𝛼1 ∈ 𝐶∞(
⋀︀𝑛,𝑛−1 𝑇 *𝑋) and 𝛼2 ∈ 𝐶∞(

⋀︀𝑛−1,𝑛 𝑇 *𝑋), then

∫︁
𝑋

𝜕 𝛼 =

∫︁
𝑋

𝜕 𝛼2 =

∫︁
𝑋

𝑑𝛼2 = 0

Similarly ∫︁
𝑋

𝜕 𝛼 =

∫︁
𝑋

𝜕 𝛼1 =

∫︁
𝑋

𝑑𝛼1 = 0

1.1.3 Kähler Identities

Let (𝑋,𝜔) be a Kähler manifold, 𝜔 induces a linear homeomorphism

𝐿𝜔 : 𝒜𝑘(𝑋) → 𝒜𝑘+2(𝑋)

𝛼 ↦→ 𝛼 ∧ 𝜔

And also Λ𝜔
.
= (−1)𝑘 * 𝐿𝜔*

Just like above, one can prove that:

⟨𝑢,Λ𝜔𝑣⟩ = ⟨𝐿𝜔𝑢, 𝑣⟩ (1.7)

For 𝑢 ∈ 𝒜𝑘(𝑋) and 𝑣 ∈ 𝒜𝑘+2(𝑋).
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Remark 1.7. But even better, we can prove that in each point 𝑝 ∈ 𝑋:

𝑔𝑝(𝐿𝜔𝛽, 𝛼) = 𝑔𝑝(𝜔 ∧ 𝛽, 𝛼) =
𝜔 ∧ 𝛽 ∧ *𝛼

𝑑𝑉𝜔

=
𝛽 ∧ 𝜔 ∧ *𝛼

𝑑𝑉𝜔
=

=
𝛽 ∧ (−1)𝑘 * *𝜔 ∧ *𝛼

𝑑𝑉𝜔
=

=
𝛽 ∧ *(−1)𝑘 * 𝐿𝜔 * 𝛼

𝑑𝑉𝜔
=

=
𝛽 ∧ *Λ𝜔𝛼

𝑑𝑉𝜔
=

= 𝑔𝑝(𝛽,Λ𝜔𝛼)

Therefore the duality is pointwise.

Let ℋ𝑝,𝑞(𝑋,C) denote the harmonic 𝑝, 𝑞 forms in 𝑋

We conclude the chapter stating a classical theorem in Hodge Theory.

Theorem 1.8 (Hodge Theorem). Let 𝑋 be a compact Kähler manifold, then:

𝐻𝑝,𝑞(𝑋,C) = 𝐻𝑝,𝑞

𝜕
(𝑋) = ℋ𝑝,𝑞(𝑋,C) (1.8)

And

𝐻𝑘(𝑋,C) =
⨁︁
𝑝+𝑞=𝑘

𝐻𝑝,𝑞(𝑋,C)

Proof. See [7].

Corollary 1.9. 𝐻𝑝,𝑞(𝑋,C) = 𝐻𝑞,𝑝(𝑋,C)

Proof. This follows easily from two observations on the Hodge star operator: we have

that * maps harmonic forms to harmonic forms, and that 𝛼𝑝,𝑞 is 𝑞, 𝑝 form, where 𝛼𝑝,𝑞

is of type 𝑝, 𝑞.

12



Chapter 2

Line Bundles

If 𝑋 is a Complex manifold we say 𝜋 : 𝐸 → 𝑋 is a line bundle, if 𝐸 is a Complex

manifold, and there exists a covering of 𝑋, 𝒰 ⊂ 𝒫(𝑋), such that for every 𝑈 in 𝒰 ,

we find a chart 𝜑 such that the diagram commutes

𝑈 × C 𝜋−1(𝑈)

𝑈

𝑝

𝜋

𝜑

(2.1)

Where 𝑝 is the first coordinate projection.

With the additional property that if 𝜋−1(𝑈)∩𝜋−1(𝑉 ) ̸= ∅, and 𝜓 : 𝜋−1(𝑉 ) → 𝑉 ×C

another such chart, then

𝜑 ∘ 𝜓−1(𝑥, 𝑣) = (𝑥, 𝐿𝑥𝑣)

for 𝐿𝑥 ∈ C.

Example 2.1. If 𝑋 is a 𝑛-dimensional Complex manifold, then

� 𝐾𝑋
.
=

⋀︀𝑛 𝑇 *𝑋

� −𝐾𝑋
.
=

⋀︀𝑛 𝑇𝑋

are line bundles over 𝑋. In particular if 𝑋 is a Riemann Surface, 𝑇𝑋 and 𝑇 *𝑋 are

line bundles over 𝑋.

We’ll call 𝐾𝑋 the canonical bundle, and −𝐾𝑋 the anti-canonical bundle, over 𝑋.
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In a holomorphic line a bundle there is a natural way to define the holomorphicity

of sections.

In a trivialization, 𝜏 : 𝐸
⃒⃒
𝑈
→ 𝑈 × C, we define 𝜕𝐸 by the equation:

𝜕𝐸(𝑓𝑒)
.
= 𝜕 𝑓 (2.2)

Where 𝑒𝑥 = 𝜏−1(𝑥, 1), and 𝑓 ∈ 𝐶∞(𝑋), since the transitions functions are holomor-

phic, we have that this operator is well defined. Indeed, if 𝑔𝑒 = 𝑒 then

𝜕𝐸(𝑓𝑔𝑒) = 𝜕(𝑓𝑔)𝑒 = (𝜕 𝑓)𝑔𝑒 = (𝜕 𝑓)𝑒

Where 𝑔 is holomorphic and nowhere vanishing.

It’s clear that:

𝜕
2

𝐸 = 0

We say that a section 𝑠 ∈ 𝐶∞(𝑋,𝐸) is holomorphic if 𝜕𝐸 𝑠 = 0

2.1 Hermitian Line Bundles

In a line bundle 𝐸 → 𝑋, we can add a metric structure.

Definition 2.2. Let ℎ ∈ 𝐶∞(𝑋,𝐸* ⊗ 𝐸*) be a hermitian tensor, we say that ℎ is a

metric if for every 𝑣 ∈ 𝑇𝑋 ∖ {0𝑝 : 𝑝 ∈ 𝑋}

ℎ(𝑣, 𝑣) > 0

We say that (𝐸, ℎ) is an hermitian line bundle.

Remark 2.3. In a trivialization, 𝜏 : 𝐸
⃒⃒
𝑈
→ 𝑈 ×C, a metric in a line bundle is given

by a function

ℎ(𝜉, 𝜉) = 𝑒−2𝜑(𝑥)|𝜏(𝜉)|2

for 𝑥 ∈ 𝑈 and 𝜉 ∈ 𝐸𝑥.
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In a holomorphic hermitian line bundle there is an natural connection, the complex

analogue of the Levi-Civita connection.

Proposition 2.4. Let (𝐸, ℎ) be an holomorphic hermitian line bundle over 𝑋. Then

there is a unique connection ∇ such that

� ∇0,1 = 𝜕𝐸

� 𝑑(ℎ(𝑠, 𝑡)) = ℎ(∇𝑠, 𝑡) + ℎ(𝑠,∇𝑡)

We will call this connection, the Chern connection of (𝐸, ℎ), and will denote

𝜕𝐸
.
= ∇1,0, in such a way that the Chern connection will be the sum 𝜕𝐸 + 𝜕𝐸.

Let Θ(𝐸) be curvature tensor associated to the metric in 𝐸. Locally we have

Θ(𝐸) =
∑︁

𝑐𝑗,𝑘𝑑𝑧
𝑗 ∧ 𝑑𝑧𝑘

Let’s consider the associated tensor:

Θ0(𝐸)(𝜉 ⊗ 𝑒)
.
=

∑︁
𝑐𝑗,𝑘 𝜉

𝑗 𝜉
𝑘

Definition 2.5. We say that 𝐸 is positive if Θ0(𝐸)(𝜉 ⊗ 𝑒) > 0 for all 𝜉 ̸= 0.

In a trivialization like in 2.3, we have that Θ(𝐸) is given by 2 𝜕 𝜕 𝜑. Up ahead we

will study the class of functions 𝜙 such that 𝑖 𝜕 𝜕 𝜙 > 0 is positive.

2.1.1 Kähler Identities (part 2)

Let 𝑋 be an 𝑛-dimensional complex manifold, and consider the Z-graded algebra

𝑀∙ .
= 𝐶∞(𝑋,∧∙𝑇 *𝑋); we say that an endomorphism 𝐿 ∈ End(𝑀∙), is of pure degree

𝑘 ∈ Z, if

𝐿 [𝐶∞(𝑋,∧𝑎𝑇 *𝑋)] ⊆ 𝐶∞(𝑋,∧𝑎+𝑘𝑇 *𝑋)

for every 𝑎 ∈ {0, 1, . . . , 𝑛}

For endomorphisms of pure degree we define:
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Definition 2.6. Let 𝐴,𝐵 ∈ End(𝑀∙) endomorphisms of pure degree 𝑎 and 𝑏 re-

spectively, we define the graded Lie Bracket of 𝐴 and 𝐵, denoted by [𝐴,𝐵], as the

endomorphism

[𝐴,𝐵]
.
= 𝐴𝐵 + (−1)𝑎𝑏𝐵𝐴 (2.3)

Clearly the operators that we defined previously, such as 𝐿𝜔, 𝜕 and 𝜕, are endor-

morphisms of pure degree. In fact their degrees are respectively 2, 1 and 1. Another

important point is that if 𝐴 is an endemorphism of pure degree then 𝐴* is also of

pure degree, with the opposite degree of 𝐴.

The last point we would like to mention is that there exists a Jacobi identity for

the graded Lie Bracket, and it states that for 𝐴,𝐵,𝐶 of degrees 𝑎, 𝑏, 𝑐 respectively

the following equation holds:

(−1)𝑐𝑎[𝐴, [𝐵,𝐶]] + (−1)𝑎𝑏[𝐵, [𝐶,𝐴]] + (−1)𝑐𝑏[𝐶, [𝐴,𝐵]] = 0

Theorem 2.7 (Kähler Identities for Line Bundles). Let (𝑋,𝜔) be a Kähler manifold,

𝐸 an hermitian holomorphic vector bundle1. Then:

[𝜕
*
𝐸, 𝐿𝜔] = 𝑖 𝜕𝐸 (2.4)

[𝜕*𝐸, 𝐿𝜔] = −𝑖 𝜕𝐸 (2.5)

[Λ𝜔, 𝜕𝐸] = −𝑖 𝜕*𝐸 (2.6)

[Λ𝜔, 𝜕𝐸] = 𝑖 𝜕
*
𝐸 (2.7)

Proof. This comes directly from the Kahler Identities in Hodge theory.

Theorem 2.8 (Bochner-Nakano Identity).

∆𝜕 = ∆𝜕 + [𝑖Θ(𝐸),Λ𝜔]

Proof. We have that

∆𝜕𝐸
= [𝜕𝐸, 𝜕

*
𝐸] = −𝑖[𝜕𝐸, [Λ𝜔, 𝜕𝐸]]

1Vector bundles over a manifold are defined similarly to line bundles, but with fibers that are
vector spaces of arbitrary dimension
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where the last equality is given by (2.7). And analogously ∆𝜕𝐸 = −𝑖[𝜕𝐸, [𝜕𝐸,Λ𝜔]]

The Jacobi Identity for graded algebras gives us

[𝜕𝐸, [Λ𝜔, 𝜕𝐸]] = [Λ, [𝜕𝐸, 𝜕𝐸]] + [𝜕𝐸, [𝜕𝐸,Λ𝜔]]

Now, since Θ(𝐸) is a 1, 1 form we have that Θ(𝐸) = [𝜕𝐸, 𝜕𝐸], which is the 1, 1

part of 𝑑2∇ = Θ(𝐸), we have that

∆𝜕𝐸
= −𝑖[𝜕𝐸, [Λ𝜔, 𝜕𝐸]] = −𝑖[Λ𝜔,Θ(𝐸)] + ∆𝜕𝐸 =

= ∆𝜕𝐸 + [𝑖Θ(𝐸),Λ𝜔]

For 𝑋 compact and 𝑢 ∈ 𝐶∞(𝑋,
⋀︀𝑝,𝑞 𝑇 *𝑋 ⊗ 𝐸), we have the following:

⟨∆𝜕𝑢, 𝑢⟩ = ⟨𝜕 𝜕* 𝑢+ 𝜕* 𝜕 𝑢, 𝑢⟩ (2.8)

= ⟨𝜕* 𝑢, 𝜕*𝑢⟩ + ⟨𝜕 𝑢, 𝜕 𝑢⟩ (2.9)

= ‖𝜕* 𝑢‖2 + ‖𝜕 𝑢‖2 (2.10)

In particular ⟨∆𝜕𝑢, 𝑢⟩ ≥ 0.

Now, Theorem 2.8 implies that if 𝑢 is 𝜕-harmonic, i.e. ∆𝜕𝑢 = 0, then

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ 𝑑𝑉𝜔 ≤ 0 (2.11)

Compute [𝑖Θ(𝐸),Λ𝜔]𝑢 is not trivial, but less trivial is to give a sign to it. In order

to simplify the situation let’s suppose that 𝑝 = 𝑛, that is consider forms of the type⋀︀𝑛,𝑞 𝑇 *𝑋 ⊗ 𝐸. Then we will have that:

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ =
∑︁

𝑐𝑗,𝑘 𝑢
𝑗
𝑆 𝑢

𝑘
𝑆 (2.12)

Where |𝑆| = 𝑞.
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2.2 Positivity

Let’s strip the differential geometry of Kähler manifold in one given point, to study

only the Linear algebra of a complex hermitian vector space. The results will then

that will be applied to each tangent space of each point of the manifold.

2.2.1 Linear Algebra

Let (𝑉, 𝐽) be a complex vector space of dimC 𝑉 = 𝑛, let ℎ be a hermitian scalar

product on 𝑉 . Given an orthonormal basis of 𝑉 , one gets an orthornomal basis of

𝑉 *, 𝜉1, . . . , 𝜉𝑛, and define

𝜔 =
∑︁
𝑗

𝜉𝑗 ∧ 𝜉𝑗

Lemma 2.9. Let 𝜃 ∈
⋀︀1,1 𝑉 * be a real positive form. Then for every 𝑞 ≥ 1 we have

1. [𝜃, 𝜔*], seen as a map
⋀︀𝑛,𝑞 𝑉 * →

⋀︀𝑛,𝑞 𝑉 *, is positive definite, moreover if we

have that 𝜃 ≥ 𝜖𝜔, then

[𝜃, 𝜔*] ≥ 𝑞𝜖Id :

𝑛,𝑞⋀︁
𝑉 * →

𝑛,𝑞⋀︁
𝑉 * (2.13)

2. ⟨[𝜃, 𝜔*]−1𝑢, 𝑢⟩𝑑𝑉𝜔 is decreasing w.r.t. 𝜔 and 𝜃

Proof. 1) Observe that, acting in
⋀︀𝑛,𝑞 𝑉 *, [𝜃, 𝜔*] = 𝜃𝜔* by the bidegree.

Let 𝜆1 ≤ · · ·𝜆𝑛 be the eigenvalues of 𝜃, observe that this makes sense since 𝜃 is

real symmetric(since it is positive). Let (𝜉𝑗)𝑗 be an ℎ-orthonormal basis such that

𝜃 = 𝑖
∑︀

𝑗 𝜆𝑗𝜉𝑗 ∧ 𝜉𝑗. One can pick the orthonormal basis in the definition of 𝜔 to

coincide with this basis. If we denote Ω
.
= 𝜉1 ∧ · · · ∧ 𝜉𝑛 ∈

⋀︀𝑛,0 𝑉 *, we have that
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(Ω ∧ 𝜉𝐽)|𝐽 |=𝑞 is a basis of
⋀︀𝑛,𝑞 𝑉 *, and for 𝑞 = 1 the following calculation holds:

[𝜃, 𝜔*](Ω ∧ 𝜉𝑗) = 𝜃𝜔*(Ω ∧ 𝜉𝑗) =

= (−1)𝑛+1𝜃 * 𝜔 * (𝜉1 ∧ · · · ∧ 𝜉𝑛 ∧ 𝜉𝑗) =

= (−1)𝑛+1𝜃 * 𝜔 ∧ (−1)𝑗(𝜉1 ∧ · · · ∧ ̂︀𝜉𝑗 · · · ∧ 𝜉𝑛) =

= (−1)𝑛+1+𝑗𝜃 * (
∑︁
𝑘

𝜉𝑘 ∧ 𝜉𝑘) ∧ (𝜉1 ∧ · · · ∧ ̂︀𝜉𝑗 · · · ∧ 𝜉𝑛) =

= (−1)𝑛+1+𝑗𝜃 * (𝜉𝑗 ∧ 𝜉𝑗) ∧ (𝜉1 ∧ · · · ∧ ̂︀𝜉𝑗 · · · ∧ 𝜉𝑛) =

= (−1)𝑛+1+𝑗𝜃 * (−1)𝑛−𝑗+1(𝜉1 ∧ · · · ∧ 𝜉𝑗 · · · ∧ 𝜉𝑛 ∧ 𝜉𝑗) =

=
∑︁
𝑘

𝜆𝑘𝜉𝑘 ∧ 𝜉𝑘 ∧ *(𝜉1 ∧ · · · ∧ 𝜉𝑛 ∧ 𝜉𝑗)

=
∑︁
𝑘

𝜆𝑘𝜉𝑘 ∧ 𝜉𝑘 ∧ (−1)𝑗+𝑛(𝜉1 ∧ · · · ∧ ̂︀𝜉𝑗 · · · ∧ 𝜉𝑛))

= (−1)𝑗+𝑛𝜆𝑗𝜉𝑗 ∧ 𝜉𝑗 ∧ (𝜉1 ∧ · · · ∧ ̂︀𝜉𝑗 ∧ · · · 𝜉𝑛)

= (−1)𝑗+𝑛+𝑛−𝑗𝜆𝑗Ω ∧ 𝜉𝑗 = 𝜆𝑗Ω ∧ 𝜉𝑗

Similarly for 𝑞 ≥ 1 one has

[𝜃, 𝜔*](Ω ∧ 𝜉𝐽) = 𝜃𝜔*(Ω ∧ 𝜉𝐽) = (
∑︁
𝑗∈𝐽

𝜆𝑗)Ω ∧ 𝜉𝐽 (2.14)

Then 2.13 follows easily.

For 2) see [2, Prop. 5.2, pag. 20]

2.2.2 Curvature

Back to hermitian holomorphic line bundles:

Lemma 2.10. There are local charts/local triviliaztions of 𝑋/𝐸 such that:

𝜔 =
∑︁
𝑘

𝜉𝑘 ∧ 𝜉𝑘 / ℎ(𝑒𝑖, 𝑒𝑗) = 𝛿𝑖,𝑗 +𝑂(|𝑧|2)

With the above lemma, we can use the results of Section 2.2.1, applied, in local
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trivializations, to differential forms. 𝜃 will be Θ(𝐸), 𝜔 the Kähler metric (by the last

lemma this definitions makes sense), by the remark 1.7 we have that 𝜔* = Λ𝜔.

Observe that (2.12) follows.

If 𝐸 is positive, then by 2.9 we have [𝑖Θ(𝐸),Λ𝜔]𝑢 ≥ 0, but not only that

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ = 0 =⇒ 𝑢 = 0

. In particular, if 𝐸 is positive and 𝑢 is 𝜕-harmonic by 2.11 we have that 𝑢 = 0.

Which by the Hodge Theorem implies that 𝐻𝑛,𝑞(𝑋,𝐸) = 0

Theorem 2.11 (Nakano Vanishing Theorem). Let 𝑋 be a compact complex manifold,

𝐸 a positive line bundle, then

𝐻𝑛,𝑞(𝑋,𝐸) = 𝐻𝑞(𝑋,𝐾𝑋 ⊗ 𝐸) = 0

Remark 2.12. We can apply the Hodge Theorem even though we don’t assume that

𝑋 is Kähler. One can do that because, if 𝑋 assumes a positive vector bundle, then

Tr(𝑖Θ(𝐸)) = 𝑖
∑︁

𝑐𝑗,𝑘 𝑑𝑧
𝑗 ∧ 𝑑𝑧𝑘

is a Kähler metric.

Similarly to (2.10) we have that

⟨∆𝜕𝑢, 𝑢⟩ = ‖𝜕* 𝑢‖2 + ‖𝜕 𝑢‖2

Which together with Theorem2.8 gives us

Proposition 2.13. ‖𝜕*𝑢‖2 + ‖𝜕 𝑢‖2 ≥
∫︀
𝑋
⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ 𝑑𝑉𝜔
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Chapter 3

𝐿2 Theory

General mantra:

In differential geometry is customary to consider only smooth objects, since those

are the natural maps to study in a smooth setting. But for some analytical results it

is useful to consider completions of spaces of functions, and use the powerful tools of

functional analysis to prove theorems.

3.1 Currents

Distributions are defined as dual objects of compacly supported smooth functions

on a manifold. Likewise, currents in a differentiable manifold are dual objects of

compactly supported smooth differential forms. The topology of a manifold 𝑀𝑛

defines a a natural topology on the space of smooth compactly supported differential

forms of order 𝑛− 𝑞, that will be denoted by 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋). Let us discuss this

in some detail.

Let 𝐾𝑛 be an exhaustion of 𝑋 by compact sets, and let

𝐶∞
𝑐 (𝐾) ⊂ 𝐶∞

𝑐 (𝑋,

𝑛−𝑞⋀︁
𝑇 *𝑋)

be the set of smooth 𝑛 − 𝑞 differential forms with support contained in 𝐾. We will

now define the topology of 𝐶∞
𝑐 (𝐾𝑛), and by a inductive process this will be enough
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to determine te topology of 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋), for more details see [3] and [11].

In a compact set 𝐾, we can always find a finite cover of 𝐾, (𝐾𝛼)𝛼=1,...,𝐹 , by

compact sets, such that each 𝐾𝛼 ⊆ 𝑈𝛼 is contained in a coordinate neighborhood 𝑈𝛼.

Now for every 𝛼 we may define a family of semi-norms1 on 𝐶∞
𝑐 (𝐾):

‖𝛽‖𝛼,ℓ
.
= max

|𝑎|≤ℓ
sup
𝐾𝛼

|𝐷𝑎𝑏𝐼,𝛼| (3.1)

Where 𝛽
⃒⃒
𝐾𝛼

=
∑︀

|𝐼|=𝑛−𝑞 𝑏𝐼,𝛼𝑑𝑥
𝐼
𝛼 in local coordiates, 𝐷 is the differential, and 𝑎 a

multi-index.

We therefore have a countable family of semi-norms on 𝐶∞
𝑐 (𝐾):

{︀
‖∙‖𝛼,ℓ : ℓ ∈ N, 𝛼 = 1, . . . , 𝐹

}︀
Which we will denote by

{︀
‖∙‖𝑗

}︀
𝑗∈N, define now the distance function:

𝑑(𝜂, 𝜎)
.
=

∑︁
𝑗≥1

‖𝜂 − 𝜎‖𝑗
1 + ‖𝜂 − 𝜎‖𝑗

1

2𝑗
(3.2)

for 𝜂, 𝜎 ∈ 𝐶∞
𝑐 (𝐾). This defines a metric space structure on 𝐶∞

𝑐 (𝐾), and since 𝐾 is

compact is easy to see that
(︀
𝐶∞
𝑐 (𝐾), 𝑑

)︀
is complete.

We clearly then have that if a sequence (𝜂𝑗)𝑗 ∈ 𝐶∞
𝑐 (𝐾) converges to 𝜂∞, then for

every 𝛼 and for every ℓ ∈ N

‖𝜂𝑗 − 𝜂∞‖𝛼,ℓ → 0

but not only that, we have that this convergence is uniform with regard to 𝛼 and ℓ.

This means that taking 𝛽𝛼𝑗
.
= (𝜂𝑗 − 𝜂∞)

⃒⃒
𝐾𝛼

, when written in local coordinates

𝛽𝛼𝑗 =
∑︀
𝑏𝛼𝑗,𝐼𝑑𝑥

𝐼
𝛼, is such that lim𝑗 sup𝐾𝛼

|𝐷𝑎𝑏𝛼𝑗,𝐼 | = 0, uniformely in 𝛼 and in 𝑎.

Now we can take the strict locally convex inductive limit2 of
(︀
𝐶∞
𝑐 (𝐾𝑛), 𝑑𝑛

)︀
, to ob-

tain a topology on 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋). It is known that such topology is not metriz-

able when 𝑀 is noncompact. We will not give here an explicit description of this

1Semi-norms are exactly like norms but they are not point-separing, that is an element might
have semi-norm equal to zero but not be zero.

2See [3], or [11].

22



topology. However, we remark that that this inductive limit is such that a functional

𝑓 : 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋) → R is continuous if and only if 𝑓𝑛
.
= 𝑓

⃒⃒
𝐶∞

𝑐 (𝐾𝑛)
is continuous

as function defined in
(︀
𝐶∞
𝑐 (𝐾𝑛), 𝑑𝑛

)︀
, see for instance [6, Theorem 25, p. 10] Hence

we have that 𝑓 is continuous iff for every 𝑛 and every sequence 𝑥𝑗 ∈ 𝐶∞
𝑐 (𝐾𝑛) such

that 𝑥𝑗 → 𝑥, we have

𝑓(𝑥𝑗) → 𝑓(𝑥)

.

If a sequence (𝜂𝑗)𝑗 ∈ 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋) is such that the support of every 𝜂𝑗 is

contained in a single fixed compact𝐾 of𝑋, we say that (𝜂𝑗)𝑗 is an admissible sequence.

Definition 3.1. A current of degree 𝑞 on 𝑀 , or a 𝑞-current, is an element of the

topological dual space to 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋).

That is, we say that

𝑇 : 𝐶∞
𝑐 (𝑋,

𝑛−𝑞⋀︁
𝑇 *𝑋) → C

a linear map is a 𝑞-current if for every admissible sequence 𝛼𝑘 ∈ 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−𝑞 𝑇 *𝑋)

that converges to 0,

𝑇 (𝛼𝑘) → 0

In particular, distributions are currents of maximal degree.

Given current of degree 𝑞 on 𝑀 , and a smooth compactly supported differential

form 𝜔 on 𝑀 , we will denote by ⟨𝛼, 𝜔⟩ ∈ R the value of 𝛼 at 𝜔.

The space of 𝑞-forms emnbeds naturally in the space of 𝑞 currents. More generally,

any 𝑝-form 𝛼 whose coefficients are locally integrable functions can be seen as a

current, by setting ⟨𝛼, 𝜔⟩ =
∫︀
𝑀
𝛼 ∧ 𝜔.

Just as in the case of distributions, one can define a series of important operations

on currents, like for instance the restriction to open subsets, or the wedge product

with a differential form. It is also defined in a natural way the operation of pointwise

multiplication by a smooth function, which makes the space of currents of a fixed

order a 𝐶∞(𝑀)-module.

Another important operation that can be extended to currents is that of differen-
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tiation. In particular, for a current 𝛼 on a complex manifold one can define 𝜕 𝛼. The

following regularity result holds:

Theorem 3.2. If 𝛼 is a 𝜕-closed current, then 𝛼 is in fact a smooth differential form.

Proof. Since ∆ = 𝑖Λ𝜕 𝜕, it follows easily from the corresponding result for the regu-

larity of harmonic 𝑝-forms, see for instance [7].

Definition 3.3. A 1, 1 current 𝑇 is said to be positive if for every strictly positive

𝑛− 1, 𝑛− 1 form 𝛼 ∈ 𝐶∞
𝑐 (𝑋,

⋀︀𝑛−1,𝑛−1 𝑇 *𝑋), 𝑇 (𝛼) ≥ 0.

In local coordinates we have that 𝑇 =
∑︀
𝜏𝑖,𝑗𝑑𝑧

𝑖 ∧ 𝑑𝑧𝑗 is said to be positive if

∑︁
𝜏𝑖,𝑗𝜆

𝑖𝜆
𝑗

is a positive measure3 for every (𝜆1, · · · , 𝜆𝑛) ∈ C𝑛

Remark 3.4. We can actually see the space of 𝑞-currents as the tensor product

𝐶∞(𝑋,

𝑞⋀︁
𝑇 *𝑋) ⊗𝐶∞ 𝒟(𝑋)

Where 𝒟(𝑋) denotes the space of distributions, dual to 𝐶∞
𝑐 (𝑋).

Seeing it this way, it is clear that all the natural notions on differential forms (e.g.

type, wedge products, derivations,..) can be extended to currents.

3.2 Differential Operators

Let 𝐸 and 𝐹 be complex vector bundles over 𝑋.

Definition 3.5. A linear differential operator of order o is a C-linear map

𝑃 : 𝐶∞(𝑋,𝐸) → 𝐶∞(𝑋,𝐹 )

3We say that a measure is positive if it is positive on the positive functions
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such that in a trivialization, 𝑃 is of the form:

𝑃 =
∑︁
|𝐼|≤o

𝑎𝐼𝐷
𝐼

where 𝐼 = (𝑖1, . . . , 𝑖𝑘) is a multi-index, |𝐼| = 𝑖1 + . . . + 𝑖𝑘, 𝑎𝐼 ∈ hom(𝐸,𝐹 ), and

𝐷𝐼 = ( 𝜕
𝜕𝑥1

)𝑖1( 𝜕
𝜕𝑥2

)𝑖2 · · · ( 𝜕
𝜕𝑥𝑘

)𝑖𝑘 .

We will deal mostly with differential operators of order |o| ≤ 1. For these operators

we define the symbol as a smooth section 𝜎𝑃 of 𝑇𝑋⊗hom(𝐸,𝐹 ) given by the formula:

𝑃 (𝑓𝑢) = 𝑓𝑃𝑢+ (𝜎𝑃𝑓)𝑢 (3.3)

Where 𝑃 is first order linear differential operator, 𝜎𝑃 it’s symbol, 𝑓 ∈ 𝐶∞(𝑋), and

𝑢 ∈ 𝐶∞(𝑋,𝐸).

Example 3.6. If 𝐸 is an hermitian holomorphic line bundle, 𝑃
.
= 𝜕𝐸 is a linear

differential operator of order o = 1.

If 𝐸 and 𝐹 are hermitian, there is a natural unbounded operator (in the functional

analytic sense) associated to a linear differential operator 𝑃 . Indeed, we can associate

to 𝑃 the operator

𝑇𝑃 : 𝐷(𝑇𝑃 ) ⊂ 𝐿2(𝑀,𝐸) → 𝐿2(𝑀,𝐹 ) (3.4)

𝑓 ↦→ 𝑃𝑓 (3.5)

Where 𝑃𝑓 is calculated as a distribution, and

𝐷(𝑇𝑃 )
.
=

{︀
𝑓 ∈ 𝐿2(𝑋,𝐸) : 𝑃𝑓 ∈ 𝐿2(𝑋,𝐹 )

}︀
It is clear that 𝐶∞

𝑐 (𝑋,𝐸) ⊂ 𝐷(𝑇𝑃 ), which implies that 𝑇 is an (densely defined)

unbounded operator.

Moreover, 𝑇𝑃 is closed, indeed if 𝑢𝜈
𝐿2

−→ 𝑢 and 𝑇𝑃𝑢𝜈
𝐿2

−→ 𝑣, then as distributions

𝑃𝑢𝜈 → 𝑃𝑢
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since for every 𝑓 ∈ 𝐶∞
𝑐

|
∫︁
𝑋

(𝑃𝑢𝜈 − 𝑃𝑢)𝑓 | = |
∫︁
𝑋

(𝑢𝜈 − 𝑢)𝑃𝑓 | ≤
∫︁
𝑋

|𝑢𝜈 − 𝑢||𝑃𝑓 |

=

∫︁
𝐾

|𝑢𝜈 − 𝑢||𝑃𝑓 |

≤ 𝐶𝜇(𝐾)‖𝑢𝜈 − 𝑢‖ → 0

where 𝑃 is given by the definition of the derivative as a distribution(integration by

parts formula), 𝐾 the support of 𝑓 .

By a similar argument one may prove that 𝐿2 convergence implies point-wise

distribution convergence. Thus we have that 𝑃𝑢(𝑓) = 𝑣(𝑓) as distributions, and this

implies that 𝑢 ∈ 𝐷(𝑇𝑃 ) and 𝑇𝑃 (𝑢) = 𝑣. We conclude that 𝑇𝑃 is a closed densely

defined operator.

3.2.1 Adjoint

There are two different notions for adjoints of differential operators: the one given

by 𝑇𝑃 and A.3, in the functional analytic 𝐿2 sense, and a distribution theoretic one,

which we will say the formal adjoint.

Definition 3.7. If 𝑃 is a differential operator in hermitian vector bundles, it exists

a unique differential operator

𝑃 ⋆ : 𝐶∞(𝑋,𝐹 ) → 𝐶∞(𝑋,𝐸)

such that

⟨𝑃𝑢, 𝑣⟩ = ⟨𝑢, 𝑃 ⋆𝑣⟩ (3.6)

For either 𝑢 or 𝑣 having compact support. We will say that 𝑃 ⋆ is the formal adjoint

of 𝑃 .

Proof. This is a simple argument using partitions of unity and integration by parts,
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that allows to conclude that

𝑃 ⋆𝑣(𝑥) =
∑︁
|𝐼|≤o

(−1)|𝐼|𝑔(𝑥)−1𝐷𝐼(𝑔(𝑥)𝑎⋆𝐼𝑣(𝑥) (3.7)

where 𝑔(𝑥) is given by the formula 𝑔𝑑𝑥1 · · · 𝑑𝑥𝑛 = 𝑑𝑉𝑔.

We can go further an extend 𝑃 ⋆ to 𝐿2 functions in the following sense: We define

𝐷(𝑃 ⋆)
.
= {𝑓 ∈ 𝐿2 : ∃ℎ𝑓 ∈ 𝐿2 such that ⟨𝐷𝑔, 𝑓⟩ = ⟨𝑔, ℎ𝑓⟩ for every 𝑔 ∈ 𝐶∞

𝑐 }, and we

get an operator

𝑃 ⋆ : 𝐷(𝑃 ⋆) ⊆ 𝐿2 → 𝐿2

which we will still denote it by 𝑃 ⋆.

Example 3.8. In Section 1.1, we defined the operators Λ𝜔, 𝑑
*, 𝜕

*
, and 𝜕*. It is clear

that they are all indeed the formal adjoints of the differential operators 𝐿𝜔, 𝑑, 𝜕, and

𝜕.

In Section 3.2 we concluded that associated to a differential operator 𝑃 , there is

an closed densely defined operator on 𝐿2, 𝑇𝑃 . By the general theory of unbounded

operators in a Hilbert space (c.f. Theorem A.3), we have that there is an densely

defined closed operator, 𝑇 *
𝑃 .

Definition 3.9. We will say that 𝑇 *
𝑃 is the Hilbert adjoint of 𝑃 , and we will denote

it sometime as 𝑇 *
𝑃 or even 𝑃 *.

Observe that these two definitions do not agree, indeed:

Example 3.10 (Formal ̸= Hilbert Adjoint). Let 𝑀 a real Riemannnian manifold

given by ]0, 1[ with usual (scalar) product.

𝑃 =
𝑑

𝑑𝑥
: 𝐿2(]0, 1[) → 𝐿2(]0, 1[)

First observe that by the Fundamental Theorem of Calculus for Measure Theory we

have 𝐷(𝑃 ) ⊆ 𝐶0([0, 1]).
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By definition 𝐷(𝑃 *) = {𝑓 ∈ 𝐿2(]0, 1[) : ∃ℎ𝑓 ∈ 𝐿2 such that ⟨𝑃𝑔, 𝑓⟩ = ⟨𝑔, ℎ⟩, ∀𝑔 ∈

𝐷(𝑃 )}, that is 𝑓 ∈ 𝐷(𝑃 *) if and only if we can find ℎ𝑓 ∈ 𝐿2 such that

∫︁ 1

0

(
𝑑

𝑑𝑥
𝑔)𝑓 =

∫︁ 1

0

𝑔ℎ𝑓

for all 𝑔 ∈ 𝐷(𝑃 ). Since 𝐶∞
𝑐 ⊆ 𝐷(𝑃 ), we have that 𝐷(𝑃 *) ⊆ 𝐷(𝑃 ), and ℎ𝑓 =

𝑃 *𝑓 = − 𝑑
𝑑𝑥
𝑓 . But from the integration by parts formula we have that for 𝑔 ∈ 𝐶∞ and

𝑓 ∈ 𝐷(𝑃 *):

∫︁ 1

0

(
𝑑

𝑑𝑥
𝑔)𝑓 = 𝑓(1)𝑔(1) − 𝑓(0)𝑔(0) −

∫︁ 1

0

𝑔
𝑑

𝑑𝑥
𝑓 =

= 𝑓(1)𝑔(1) − 𝑓(0)𝑔(0) +

∫︁ 1

0

𝑔𝑃 *𝑓

Therefore we have that 𝑓(1) = 0 = 𝑓(0) (this makes sense since 𝐷(𝑃 ) ⊆ 𝐶0([0, 1])).

In fact this shows that 𝐷(𝑃 *) = {𝑓 ∈ 𝐷(𝑃 ) : 𝑓(1) = 0 = 𝑓(0)}

But it is clear that when we consider the formal adjoint, 𝑃 ⋆, we get that the domain

of 𝑃 ⋆ coincides with 𝐷(𝑃 ), since 𝑓 ∈ 𝐷(𝑃 ⋆) if and only if it exists ℎ𝑓 ∈ 𝐿2 such that

∫︁ 1

0

𝑓(𝑥)(𝑃𝑔)(𝑥)𝑑𝑥 =

∫︁ 1

0

ℎ𝑓 (𝑥)𝑔(𝑥)𝑑𝑥

for every 𝑔 ∈ 𝐶∞
𝑐 , and by the integration by parts formula

∫︁ 1

0

(
𝑑

𝑑𝑥
𝑔)𝑓 = 𝑓(1)𝑔(1) − 𝑓(0)𝑔(0) −

∫︁ 1

0

𝑔
𝑑

𝑑𝑥
𝑓 =

= 0 +

∫︁ 1

0

𝑔𝑃 *𝑓

we have that ℎ𝑓 (𝑥) = − 𝑑
𝑑𝑥
𝑓(𝑥), and we don’t have the restriction as we did in the 𝑃 *

case.

Therefore 𝐷(𝑃 *) ( 𝐷(𝑃 ⋆).
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3.3 𝐿2 Theory on Complete Riemannian Manifolds

As seen before, in general the notions of adjoint, namely the formal adjoint and the

Hilbert adjoint, do not agree. But if we add the hypothesis of 𝑋 admiting a complete

riemannian metric, the issue disappears for the first order operators we are interested

in ∇𝐸 and 𝜕𝐸, and we have

Theorem 3.11. Let (𝑋, 𝑔) be complete, then for every 𝑢 ∈ 𝐿2(𝑀,𝐸):

� We can find 𝑢𝑛 ∈ 𝐶∞
𝑐 (𝑋,𝐸) such that 𝑢𝑛

𝐿2

−→ 𝑢, with the following property: for

every 𝑃 : 𝐶∞(𝑋,𝐸) → 𝐶∞(𝑋,𝐹 ) first order linear differential operator, with

bounded symbol 𝜎𝑃 , 𝑃𝑢𝑛
𝐿2

−→ 𝑃𝑢, if 𝑃𝑢 ∈ 𝐿2(𝑋,𝐹 ).

� 𝑃 ⋆ = 𝑃 *

Proof. For the first: By the Friedrich’s Lemma in the theory of differential operators

we can restrict ourselves to the case that 𝑢 ∈ 𝐶∞. Then, since the manifold is

complete, we can find a sequence of smooth cut-off functions 𝜒𝑛 : 𝑋 → R such that

𝑑𝜒𝑛 is bounded, and if 𝐾𝑛
.
= 𝜒−1

𝑛 (1) then it satisfies

∪𝐾𝑛 = 𝑋

.

Define 𝑢𝑛
.
= 𝜒𝑛𝑢, clearly 𝑢𝑛 ∈ 𝐶∞

𝑐 , and we have that:

𝑃 (𝑢𝑛) = 𝑃 (𝜒𝑛𝑢) = 𝜎𝑃 (𝜒𝑛)𝑢+ 𝜒𝑛𝑃 (𝑢)

By the dominated convergence theorem we have that 𝜒𝑛𝑃 (𝑢) → 𝑃 (𝑢) in 𝐿2. Since

𝜎𝑃 is bounded we have that |𝜎𝑃 (𝑓)| ≤ 𝐶|𝑑𝑓 |, where 𝐶 is a constant, and for every 𝑓 .

Since 𝑑𝜒𝑛 is bounded, we have |𝜎𝑃 (𝜒𝑛)| is bounded.

Since 𝜎𝑃 (𝜒𝑛)(𝑡) is eventually 0 for every 𝑡 ∈ 𝑋, we have that, by the dominated

convergence theorem, 𝜎𝑃 (𝜒𝑛)𝑢→ 0 in 𝐿2. We therefore have that

𝑃 (𝑢𝑛)
𝐿2

→ 𝑃 (𝑢)
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For the second point: Both adjoints agree where defined, in particular they agree

on smooth compactly supported sections, using the first point and passing through a

limit gives the result.

Example 3.12. For 𝑃 = 𝜕𝐸, 𝜕
*
𝐸, ∇𝐸, and ∇*

𝐸 the result applies, i.e. 𝜎𝑃 is bounded.

With this we also get a improved version of Proposition 2.13.

Corollary 3.13. If 𝑔 is complete, then if

𝑢 ∈ 𝐿2(𝑋,

𝑛,𝑞⋀︁
𝑇 *𝑋 ⊗ 𝐿) ∩𝐷(𝑇𝜕) ∩𝐷(𝑇 *

𝜕
)

we have

‖𝜕*𝑢‖2 + ‖𝜕 𝑢‖2 ≥
∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ 𝑑𝑉𝜔 (3.8)

Proof. By Theorem 3.27 we can find a sequence of functions 𝑢𝑛 ∈ 𝐶∞
𝑐 (𝑋) such that

𝑢𝑛 → 𝑢 and 𝑃𝑢𝑛 → 𝑃𝑢, for 𝑃 either 𝜕 or 𝜕
*
, we then have that

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢𝑛, 𝑢𝑛⟩ 𝑑𝑉𝜔 ≤ ‖𝜕 𝑢𝑛‖2 + ‖𝜕* 𝑢𝑛‖2 → ‖𝜕 𝑢‖2 + ‖𝜕* 𝑢‖2

We then can apply the Fatou’s Lemma for a subsequence of 𝑢𝑛, which we will still

denote by 𝑢𝑛 that converges almost everywhere to 𝑢, and have that

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢, 𝑢⟩ 𝑑𝑉𝜔 ≤ lim inf

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑢𝑛, 𝑢𝑛⟩ 𝑑𝑉𝜔 ≤ ‖𝜕 𝑢‖2 + ‖𝜕* 𝑢‖2

3.4 Main Results

Theorem 3.14 (Complicated Smooth Version). Let (𝑋,𝜔) be a complete Kähler

manifold, and 𝐸 a positive line bundle. If 𝑣 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞 𝑇 *𝑋 ⊗ 𝐸), is 𝜕𝐸-closed,

i.e., 𝜕𝐸 𝑣 = 0 with ∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩ 𝑑𝑉𝜔 <∞
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then

𝜕 𝑢 = 𝑣

for some 𝑢 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞−1 𝑇 *𝑋 ⊗ 𝐸) and it satisfies the following norm inequality:

‖𝑢‖2 ≤
∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩ 𝑑𝑉𝜔

Proof. Let 𝐴 denote the operator [𝑖Θ(𝐸),Λ𝜔].

Since ker𝑇𝜕𝐸 is closed, we have that

𝐿2(𝑋,

𝑛,𝑞⋀︁
𝑇 *𝑋 ⊗ 𝐸) = ker𝑇𝜕𝐸 ⊕ (ker𝑇𝜕𝐸)⊥ (3.9)

Let 𝑓 ∈ 𝐷(𝑇𝜕*𝐸), 𝑓 decomposes as 𝑓1 + 𝑓2, with 𝑓1 ∈ ker𝑇𝜕𝐸 and 𝑓2 ∈ (ker𝑇𝜕𝐸)⊥.

And we have

|⟨𝑣, 𝑓⟩|2 = |⟨𝑣, 𝑓1⟩|2 = |⟨𝐴(𝐴−1𝑣), 𝑓1⟩|2 ≤

≤
(︀ ∫︁

⟨𝐴(𝐴−1𝑣), 𝐴−1𝑣⟩𝑑𝑉𝜔
)︀(︀ ∫︁

⟨𝐴𝑓1, 𝑓1⟩
)︀

=
(︀ ∫︁

⟨𝑣, 𝐴−1𝑣⟩𝑑𝑉𝜔
)︀(︀ ∫︁

⟨𝐴𝑓1, 𝑓1⟩
)︀

Where the inequality is the above formula is is the Cauchy–Schwarz inequality, using

that 𝐴 ≥ 0 .

Observe that, by Theorem A.3, we have

(ker𝑇𝜕𝐸)⊥ = Im𝑇 *
𝜕𝐸

⊂ ker𝑇𝜕*𝐸

which implies that 𝜕
*
𝐸 𝑓2 = 0. Since 𝑓 ∈ 𝐷(𝑇𝜕*𝐸), it follows that 𝑓1 ∈ 𝐷(𝑇𝜕*𝐸) as well,

therefore 𝑓1 ∈ 𝐷(𝑇𝜕*𝐸) ∩𝐷(𝑇𝜕𝐸), by Corollary 3.13 we have:

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]𝑓1, 𝑓1⟩ 𝑑𝑉𝜔 ≤ ‖𝜕*𝑓1‖2 + ‖𝜕 𝑓1‖2

= ‖𝜕*𝑓1‖2 = ‖𝜕*𝑓‖2
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Therefore we get

|⟨𝑣, 𝑓⟩|2 ≤
(︀ ∫︁

⟨𝑣,𝐴−1𝑣⟩𝑑𝑉𝜔
)︀
‖𝜕*𝑓‖2 (3.10)

For every 𝑓 ∈ 𝐷(𝑇𝜕*𝐸).

This implies that we have a well defined continuous function:

ℓ : 𝑇𝜕*𝐸(𝐷(𝑇𝜕*𝐸)) ⊆ 𝐿2 → C

𝜕
*
𝑓 ↦→ ⟨𝑓, 𝑣⟩

with ‖ℓ‖ ≤ 𝐶
.
=

(︀ ∫︀
⟨𝐴−1𝑣, 𝑣⟩

)︀ 1
2 . We can extend ℓ to 𝐿2 setting it to be zero in the

orthogonal complement of 𝑇𝜕*𝐸(𝐷(𝑇𝜕*𝐸)), and by the Riesz Representation theorem it

exists

𝑢 ∈ 𝐿2(𝑋,

𝑛,𝑞−1⋀︁
𝑇 *𝑋 ⊗ 𝐸)

such that

⟨𝜕* 𝑓, 𝑢⟩ = ⟨𝑓, 𝑣⟩ (3.11)

For every 𝑓 ∈ 𝐷(𝑇𝜕*𝐸), which is dense in 𝐿2, we then conclude that 𝜕 𝑢 = 𝑣.

Theorem 3.15 (Reasonable Smooth Version). Let (𝑋,𝜔) a complete Kähler mani-

fold, and 𝐸 a holomorphic hermitian line bundle such that

Θ(𝐸) ≥ 𝜖𝜔

for some 𝜖 > 0. Then for every 𝜕𝐸-closed form, 𝑣 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞 𝑇 *𝑋 ⊗ 𝐸), there

exists 𝑢 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞−1 𝑇 *𝑋 ⊗ 𝐸) with

𝜕𝐸 𝑢 = 𝑣

such that

‖𝑢‖2 ≤ 1

𝑞𝜖
‖𝑣‖2

Proof. This is a direct application of Lemma 2.9 and Theorem 3.14.

Remark 3.16. The same results are true, if instead of supposing that (𝑋,𝜔) is com-
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plete, we instead suppose that 𝑋 admits a complete Kähler metric, 𝜔′.

Proof. Indeed, let 𝜔𝜖
.
= 𝜔+ 𝜖𝜔′, it is not hard to verify that 𝜔𝜖 is complete. In general

if 𝜔1 ≥ 𝜔2 Kähler (Riemannian) metrics, with 𝜔2 complete, 𝜔1 will be complete as

well.

Then, since 𝜔𝜖 ≥ 𝜔, by Lemma 2.9 we have that

⟨[𝑖Θ(𝐸),Λ𝜔𝜖 ]
−1𝑣, 𝑣⟩𝑑𝑉𝜔𝜖 ≤ ⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩𝑑𝑉𝜔

Therefore if 𝑣 is such that
∫︀
𝑋
⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩𝑑𝑉𝜔 <∞, then so will

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔𝜖 ]
−1𝑣, 𝑣⟩𝑑𝑉𝜔𝜖 <∞

we can then apply the theorem and get 𝑢𝜖 ∈ 𝐿2
𝜔𝜖

(𝑋,𝑇 *𝑋 ⊗ 𝐸) that solves

𝜕 𝑢𝜖 = 𝑣

with the estimate

‖𝑢𝜖‖2𝜔𝜖
≤

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔𝜖 ]
−1𝑣, 𝑣⟩ 𝑑𝑉𝜔𝜖 ≤

∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩ 𝑑𝑉𝜔

Since 𝜔𝜖 ≥ 𝜔 then 𝑑𝑉𝜔𝜖 ≥ 𝑑𝑉𝜔 and |𝑠|𝜔𝜖 ≥ |𝑠|𝜔 as well. Therefore

𝑢𝜖 ∈ 𝐿2
𝜔(𝑋,

𝑛,𝑞−1⋀︁
𝑇 *𝑋 ⊗ 𝐸)

with bounded norm, by the Banach–Alaoglu theorem, we have that there exists a

weakly convergent sequence 𝑢𝜖𝑘
𝐿2

⇀ 𝑢, with 𝑢 ∈ 𝐿2
𝜔(𝑋,𝑇 *𝑋 ⊗ 𝐸), such that

‖𝑢‖2 ≤
∫︁
𝑋

⟨[𝑖Θ(𝐸),Λ𝜔]−1𝑣, 𝑣⟩ 𝑑𝑉𝜔

And clearly we have that in the sense of distributions

𝜕 𝑢 = 𝑣
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3.4.1 Plurisubharmonic Functions and Convexity

Let Ω ⊆ C𝑛 be an open set, we define now a class o functions that plays an important

role in the theory.

Definition 3.17. Let 𝑢 : Ω → [−∞,∞[ be an upper-semicontinous function, we say

that 𝑢 is plurisubharmonic, or psh, if for every 𝑎 ∈ Ω, and 𝜉 ∈ C𝑛 such that the

2-disk {𝑎+ 𝑧𝜉 : 𝑧 ∈ D} ⊂ Ω, we have

𝑢(𝑎) ≤ 1

2𝜋

∫︁ 2𝜋

0

𝑢(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃 (3.12)

A clear first consequence is that the maximum of two psh functions is psh

Lemma 3.18. Let 𝑢1, 𝑢2 : Ω → [−∞,∞[ be psh functions, then 𝑓
.
= max{𝑢1, 𝑢2} is

psh.

Proof. Let 𝑎 ∈ Ω and 𝜉 ∈ C𝑛 such that {𝑎+ 𝑧𝜉 : 𝑧 ∈ D} ⊂ Ω. Then clearly

∫︁ 2𝜋

0

𝑢𝑗(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃 ≤
∫︁ 2𝜋

0

𝑓(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃, for 𝑗 = 1, 2

hence

𝑢𝑗(𝑎) ≤
∫︁ 2𝜋

0

𝑢𝑗(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃 ≤
∫︁ 2𝜋

0

𝑓(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃

since 𝑓(𝑎) ∈ {𝑢1(𝑎), 𝑢2(𝑎)} the result follows.

There is a useful characterization of 𝐿1
𝑙𝑜𝑐 psh functions.

Proposition 3.19. 𝑢 ∈ 𝐿1
𝑙𝑜𝑐(Ω) is plurisubharmonic if, and only if, 𝑖 𝜕 𝜕 𝑢 ≥ 0, in

the sense of currents4.

Proof. For simplicity, let us assume that 𝑢 is 𝐶2(Ω). In this case, the result is obtained

from the following computation.

4See Section 3.1.
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Let 𝐹 (𝑡)
.
= 1

2𝜋

∫︀ 2𝜋

0
𝑢(𝑎+ 𝑡𝜉𝑒𝑖𝜃)𝑑𝜃, then

1

2𝜋

∫︁ 2𝜋

0

𝑢(𝑎+ 𝜉𝑒𝑖𝜃)𝑑𝜃 − 𝑢(𝑎) = 𝐹 (1) − 𝐹 (0) =

∫︁ 1

0

𝐹 ′(𝑡)𝑑𝑡 =

=
1

2𝜋

∫︁ 1

0

(︀ ∫︁ 2𝜋

0

⟨∇𝑢(𝑎+ 𝑡𝜉𝑒1𝜃), 𝜉𝑒𝑖𝜃⟩𝑑𝜃
)︀
𝑑𝑡 = ⋆

Taking 𝐺(𝑠)
.
=

∫︀ 2𝜋

0
⟨∇𝑢(𝑎+ 𝑠𝜉𝑒1𝜃), 𝜉𝑒𝑖𝜃⟩𝑑𝜃, we have that

∫︀ 𝑡
0
𝐺′(𝑠)𝑑𝑠 = 𝐺(𝑡) −𝐺(0) =

𝐺(𝑡), and

⋆ =
1

2𝜋

∫︁ 1

0

𝐺(𝑡)𝑑𝑡 =
1

2𝜋

∫︁ 1

0

(︀ ∫︁ 𝑡

0

𝐺′(𝑠)𝑑𝑠
)︀
𝑑𝑡

=
1

2𝜋

∫︁ 1

0

(︀ ∫︁ 𝑡

0

(

∫︁ 2𝜋

0

⟨Hess𝑢(𝑎+ 𝑠𝜉𝑒𝑖𝜃)𝜉𝑒𝑖𝜃, 𝜉𝑒𝑖𝜃⟩𝑑𝜃)𝑑𝑠
)︀
𝑑𝑡 =

=
1

2𝜋

∫︁ 1

0

(︀ ∫︁ 𝑡

0

1

𝑠
(

∫︁ 2𝜋

0

𝑠⟨Hess𝑢(𝑎+ 𝑠𝜉𝑒𝑖𝜃)𝜉, 𝜉⟩𝑑𝜃)𝑑𝑠
)︀
𝑑𝑡 =

=
1

2𝜋

∫︁ 1

0

𝑑𝑡
(︀ ∫︁

|𝑧|≤𝑡

Hess𝑢(𝑎+ 𝑧𝜉)

|𝑧|
𝑑𝜆(𝑧)

)︀
Where 𝜆 is the Lebesgue measure in C.

Therefore, since ⋆ ≥ 0 so is 1
2𝜋

∫︀ 1

0
𝑑𝑡
(︀ ∫︀

|𝑧|≤𝑡
Hess𝑢(𝑎+𝑧𝜉)

|𝑧| 𝑑𝜆(𝑧)
)︀
≥ 0, and we have that

Hess𝑢 is positive semi-definite.

We say that 𝜙 is strictly psh if 𝑖 𝜕 𝜕 𝜙 > 0.

Using the characterization of psh functions given in Proposition 3.19, one can

extend the concept of plurisubharmonicity for functions defined on complex manifolds.

Definition 3.20. A complex manifold 𝑋 is said to be weakly pseudo-convex if it

admits a smooth exhaustion function5 that is psh. The manifold 𝑋 is strongly pseudo-

convex if it admits a smooth exhaustive function that is strictly psh.

Clearly, every compact manifold is weakly pseudo-convex, as one sees considering

constant functions.

We will now give the statement of a standard result of the theory, whose proof

can be found in [2].

5We say that a continuous function, 𝜓, is exhaustive if 𝜓−1(]−∞, 𝑐]) ⊂⊂ 𝑋
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Proposition 3.21. Every weakly pseudo-convex Kähler manifold admits a complete

Kähler metric.

A good exhaustion of 𝑋 is an exhaustion by weakly pseudo-convex open sets

Ω𝑗 ⊂⊂ 𝑋, with compact closure in 𝑋.

Definition 3.22. Given a function 𝜙 ∈ 𝐿1
𝑙𝑜𝑐 and a (1, 1) closed real form 𝜃, we say

that 𝜙 is 𝜃-regularizable if, 𝜙 is 𝜃-psh, that is, such that 𝜃 + 𝑖 𝜕 𝜕 𝜙 ≥ 0, and if there

exists a sequence 𝜙𝑗 ∈ 𝐶∞(𝑋) such that:

a) 𝜙𝑗(𝑝) → 𝜙(𝑝) for every 𝑝 ∈ 𝑋;

b) for every Ω ⊂⊂ 𝑋 open set with compact closure, there exists 𝑗(Ω) such that the

sequence (𝜙𝑗
⃒⃒
Ω

)𝑗 is decreasing and strictly 𝜃-psh for 𝑗 ≥ 𝑗(Ω).

Theorem 3.23 (Even More Complicated Singular Version). Let (𝑋,𝜔) be a Kähler

manifold, with good exhaustion. 𝐸 an holomorphic line bundle over 𝑋, with the

singular metric ℎ̃ = 𝑒−𝜙ℎ such that

𝑖Θ(𝐸, ℎ̃) = 𝑖Θ(𝐸, ℎ) + 𝑖 𝜕 𝜕 𝜙 ≥ 𝜂 > 0

where 𝜙 is a (𝑖Θ(𝐸, ℎ) − 𝜂)-regularizable function, and 𝜂 a positive (1, 1)-form.

If 𝑣 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞 𝑇 *𝑋 ⊗ 𝐸), a 𝜕𝐸-closed form, with

∫︁
𝑋

⟨[𝜂,Λ𝜔]−1𝑣, 𝑣⟩ 𝑒−2𝜙𝑑𝑉𝜔 <∞

then

𝜕 𝑢 = 𝑣

for some 𝑢 ∈ 𝐿2(𝑋,
⋀︀𝑛,𝑞−1 𝑇 *𝑋 ⊗ 𝐸) that satisfies the following norm inequality:

‖𝑢‖2
ℎ̃
≤

∫︁
𝑋

⟨[𝜂,Λ𝜔]−1𝑣, 𝑣⟩ 𝑒−2𝜙𝑑𝑉𝜔

Proof. Since 𝑋 has a good exhaustion and 𝜙 is regularizable we have: {Ω𝑗 ⊂⊂ 𝑋}𝑗,

an exhaustion of 𝑋 by weakly pseudoconvex open sets, for each 𝑗 a sequence (𝜙𝑗𝑘)𝑘 of
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smooth functions on Ω𝑗 that converge decreasingly to 𝜙
⃒⃒
Ω𝑗
, since 𝑖Θ(𝐸, ℎ)+𝑖 𝜕 𝜕 𝜙 ≥ 𝜂

we can assume that 𝑖Θ(𝐸, ℎ) + 𝑖 𝜕 𝜕 𝜙𝑗𝑘 ≥ 𝜂 as well.

Since 𝜙𝑗𝑘 ≥ 𝜙, we have that

∫︁
Ω𝑗

⟨[𝜂,Λ𝜔]−1𝑣, 𝑣⟩ 𝑒−2𝜙𝑗
𝑘𝑑𝑉𝜔 ≤

∫︁
𝑋

⟨[𝜂,Λ𝜔]−1𝑣, 𝑣⟩ 𝑒−2𝜙𝑑𝑉𝜔
.
= 𝐶

By Lemma 2.9, we can apply the smooth theorem to (𝐸, 𝑒−𝜙
𝑗
𝑘ℎ) obtaining that there

exists 𝑢𝑗𝑘 ∈ 𝐿2
𝑗,𝑘(Ω𝑗) such that

𝜕𝐸 𝑢
𝑗
𝑘 = 𝑣

and

‖𝑢𝑗𝑘‖
2
𝑗,𝑘 ≤

∫︁
Ω𝑗

⟨[𝜂,Λ𝜔]−1𝑣, 𝑣⟩ 𝑒−2𝜙𝑗
𝑘𝑑𝑉𝜔 ≤ 𝐶

Since −𝜙𝑗ℓ ≤ −𝜙𝑗𝑘 for 𝑘 ≥ ℓ, we have that ‖𝑢𝑗𝑘‖2𝑗,ℓ ≤ ‖𝑢𝑗𝑘‖2𝑗,𝑘 ≤ 𝐶, therefore (𝑢𝑗𝑘)𝑘≥ℓ ∈

𝐿2
𝑗,ℓ is a bounded sequence. This implies that there exists a subsequence that weakly

converges in 𝐿2
𝑗,ℓ, by a Cantor diagonal argument we can find a subsequence of (𝑢𝑗𝑘)𝑘,

which we will still denote by the same symbol, such that

𝑢𝑗𝑘
𝐿2
𝑗,ℓ
⇀ 𝑢𝑗

for all ℓ ≥ 1.

So far we have that for each Ω𝑗 we found a 𝑢𝑗 such that 𝜕𝐸 𝑢
𝑗 = 𝑣 and ‖𝑢𝑗‖2𝑗,ℓ ≤ 𝐶

for every ℓ. This implies that actually ‖𝑢𝑗‖2𝑗 ≤ 𝐶 by the monotone convergence

theorem we have that

∫︁
Ω𝑗

|𝑢𝑗|2𝑒−𝜙𝑑𝑉𝜔 =

∫︁
Ω𝑗

|𝑢𝑗|2 lim
ℓ
𝑒−𝜙

𝑗
ℓ𝑑𝑉𝜔 = lim

ℓ

∫︁
Ω𝑗

|𝑢𝑗|2𝑒−𝜙
𝑗
ℓ𝑑𝑉𝜔 ≤ 𝐶

We then have that for every compact 𝐾 ⊂ 𝑋 there exists 𝑚𝐾 ≥ 1 such that for

𝑗 ≥ 𝑚𝐾 𝐾 ⊂ Ω𝑗, and then (𝑢𝑗
⃒⃒
𝐾

)𝑗≥𝑚𝐾
∈ 𝐿2(𝐾) becomes a bounded sequence, which

therefore has a weakly convergent subsequence 𝑢𝑗
𝐿2(𝐾)
⇀ 𝑢 ∈ 𝐿2(𝐾) with ‖𝑢‖2 ≤ 𝐶
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and s.t.

𝜕𝐸 𝑢 = 𝑣

The theorem then follows.

Theorem 3.24 (Reasonable Singular Version). Let (𝑋,𝜔) be a Kähler manifold,

with good exhaustion. 𝐸 an holomorphic line bundle over 𝑋, with the singular metric

ℎ̃ = 𝑒−𝜙ℎ such that

𝑖Θ(𝐸, ℎ̃) = 𝑖Θ(𝐸, ℎ)+𝑖 𝜕 𝜕 𝜙 ≥ 𝜖𝜔
(︀
𝑖Θ(𝐸⊗𝐾*

𝑋) = 𝑖Θ(𝐸, ℎ)+𝑖 𝜕 𝜕 𝜙+𝑅𝑖𝑐(𝜔) ≥ 𝜖𝜔
)︀

with 𝜙 a 𝑖Θ(𝐸, ℎ)− 𝜖𝜔-regularizable (𝑖Θ(𝐸, ℎ)− 𝜖𝜔+𝑅𝑖𝑐(𝜔)-regularizable) function,

and 𝜖 > 0. Then for every 𝜕𝐸-closed form,

𝑣 ∈ 𝐿2(𝑋,

𝑛,𝑞⋀︁
𝑇 *𝑋 ⊗ 𝐸)

(︀
𝑣 ∈ 𝐿2(𝑋,

0,𝑞⋀︁
𝑇 *𝑋 ⊗ 𝐸)

)︀
,

there exists

𝑢 ∈ 𝐿2(𝑋,

𝑛,𝑞−1⋀︁
𝑇 *𝑋 ⊗ 𝐸)

(︀
𝑢 ∈ 𝐿2(𝑋,

0,𝑞−1⋀︁
𝑇 *𝑋 ⊗ 𝐸)

)︀
with

𝜕𝐸 𝑢 = 𝑣

such that

‖𝑢‖2
ℎ̃
≤ 1

𝑞𝜖
‖𝑣‖2

ℎ̃

Proof. For the 𝑛, 𝑞 case we have that by Lemma 2.9, since 𝑖Θ(𝐸, ℎ̃) = 𝑖Θ(𝐸, ℎ) +

𝑖 𝜕 𝜕 𝜙 ≥ 𝜖𝜔, we have that [𝑖Θ(𝐸, ℎ̃),Λ𝜔]−1 ≤ 1
𝑞𝜖

Id, and by Theorem 3.23, the result

holds.

For 0, 𝑞 case it is enough to observe that a 0, 𝑞 form with values in 𝐸 can be seen

as a 𝑛, 𝑞 form with values in 𝐸−𝐾𝑋 by contraction, and in these case the line bundle

has curvature

Θ(𝐸) +𝑅𝑖𝑐(𝜔)
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And we restricted ourselves to the previous case.

Define 𝐽(𝜙)
.
= {𝑓 ∈ 𝒪𝑋 : 𝑓 ∈ 𝐿2

𝜙} as the ideal of the sheaf of holomorphic

functions of 𝑋. It consists of of germs of holomorphic functions such that |𝑓 |2𝑒−2𝜙 is

integrable.

Theorem 3.25 (Vanishing Cohomology). Let (𝑋,𝜔) be a weak pseudo convex Kähler

manifold, 𝐸 a holomorphic line bundle, with metric ℎ such that there exists

𝜙 : 𝑋 → [−∞,∞[ a 𝐿1
𝑙𝑜𝑐 function

𝜖 > 0

such that 𝜙 is (𝑖Θ(𝐸, ℎ) − 𝜖𝜔)-regularizable.

Then:

𝐻𝑞
(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙)

)︀
= 0

for 𝑞 ≥ 1.

Proof. Let ℒ𝑞 be the sheaf of germs of sections of
⋀︀𝑛,𝑞 𝑇 *𝑋 ⊗𝐸, 𝑢, such that both 𝑢

and 𝜕𝐸 𝑢 belong to 𝐿2(𝑒−𝜙ℎ). we then have that:

ℒ0 ℒ1 · · · ℒ𝑛 0
𝜕𝐸 𝜕𝐸 𝜕𝐸 (3.13)

is a complex. This will be a resolution of 𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙).

Indeed we have a natural homomorphism 𝑖 : 𝒪(𝐾𝑋 +𝐸)⊗𝐽(𝜙) → ℒ0, and by the

regularity theory of currents, the image of 𝑖 is equal to the kernel of 𝜕𝐸. To check

the exactness in the rest of the sequence, it is enough to apply Theorem 3.24 to our

funtion 𝜙 in small open neighborhoods around each point. Therefore

0 𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙) ℒ0 ℒ1 · · ·𝑖 𝜕𝐸 𝜕𝐸

(3.14)

is exact, and since ℒ𝑞 is a 𝐶∞ sheaf module over 𝑋, we have that (ℒ⋆, 𝜕𝐸) is a acyclic
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resolution. This means that we can compute the cohomology of 𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙)

using the resolution. In fact,

𝐻𝑞
(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙)

)︀
= 𝐻𝑞(ℒ⋆(𝑋), 𝜕𝐸)

where 𝐻𝑞(ℒ⋆(𝑋), 𝜕𝐸) is the cohomology of the global sections of ℒ.

Just like we did for the sheaf exactness, we would like to use Theorem 3.24 to

conclude that the global sections have vanishing cohomology. But, in Theorem 3.24

it is assumed that the sections are 𝐿2 in 𝑋, while here the global sections of ℒ need

only to be locally 𝐿2. In order to circumvent this problem, we use the weak pseudo-

convexity, and we apply Theorem 3.24 with a different metric, 𝑒−𝜒∘𝜓ℎ, where 𝜓 is a

smooth psh exhaustion function of 𝑋 and 𝜒 : R→ R a convex smooth function that

grows arbitrarily fast at infinity. So we get that the sections are 𝐿2 w.r.t. this new

metric, and therefore Theorem 3.24 gives that for every 𝜕𝐸-closed 𝑣 ∈ ℒ𝑞(𝑋) is 𝜕𝐸

exact in 𝐿2(𝑒−𝜒∘𝜓ℎ), and in particular in ℒ. And the result follows.

Let’s now extend the notion of psh function with the introduction of the introduce

a new class of functions called quasi-psh. Roughly speaking, a quasi-psh function is

a function which is smooth, except at some point where the singularity is that of a

psh function.

Definition 3.26 (Quasi-psh functions). We say that a upper-semicontinous function

𝑢 : 𝑋 → [−∞,∞[ is quasi-psh if locally it is of the form 𝑓 +𝜙 where 𝑓 is psh, and 𝜙

is smooth.

The following theorem show us that quasi-psh functions are well approximated by

smooth functions.

Theorem 3.27 (Approximation of quasi-psh functions). Let 𝑋 be a complex mani-

fold, 𝜙 : 𝑋 → [−∞,+∞] a continuous quasi-psh function, and 𝜃 > 0 a closed, positive

(1, 1) form such that

𝜃 + 𝑖 𝜕 𝜕 𝜙 ≥ 0

Then 𝜙 is 𝜃-regularizable.

40



Proof. Let 𝜓𝑗
.
= max{−𝑗, 𝜙}, since 𝜃 is closed, locally we may find 𝑓 ∈ 𝐶∞(𝑋) such

that 𝑖 𝜕 𝜕 𝑓 = 𝜃, and it follows that 𝑓 − 𝑗 and 𝑓 +𝜙 are psh, therefore max{𝑓 − 𝑗, 𝑓 +

𝜙} = 𝑓 + 𝜓𝑗 is psh, hence 𝜃 + 𝑖 𝜕 𝜕 𝜓𝑗 ≥ 0.

Consider an exhaustion of 𝑋 by compact sets 𝐾𝑗 ⊂ 𝐾𝑗+1, we will construct a

sequence 𝜙𝑗 ∈ 𝐶∞(𝑋) such that for every 𝑗 𝜙𝑗 we have:

𝜙𝑗(𝑝) → 𝜙(𝑝), ∀𝑝 ∈ 𝑋 (3.15)

𝜓𝑗
⃒⃒
𝐾𝑗+1

< 𝜙𝑗
⃒⃒
𝐾𝑗+1

(3.16)

𝜙𝑗+1

⃒⃒
𝐾𝑗+1

≤ 𝜙𝑗
⃒⃒
𝐾𝑗+1

(3.17)

𝜃 + 𝑖 𝜕 𝜕 𝜙𝑗
⃒⃒
𝐾𝑗+1

> 0 (3.18)

Once done that (𝜙𝑗)𝑗 will be the sequence needed in the definition of 𝜃-regularizable,

that is 𝜙𝑗 will be eventually decreasing and strictly 𝜃-psh on compact sets.

Indeed, since (𝐾𝑗)𝑗 is exhaustive on 𝑋 we have that, given a compact set 𝐾, there

exists 𝑗0 ∈ N such that 𝐾 ⊆ 𝐾𝑗0 , and by (3.17) and (3.18), part b) of the definition

3.22 is satisfied.

Let’s then construct such a sequence. We will do it by recurrence. Let 𝜙0

be any smooth function such that 𝜙0 > 𝜓0. Now suppose we have constructed

𝜙0, 𝜙1, . . . , 𝜙𝑗−1. Since 𝜓𝑗 is a continuous quasi-psh and 𝜃-psh, we have that, by

Richberg’s theorem, there exists a decreasing sequence (𝜓𝑘𝑗 )𝑘 such that:

(︀
𝜓𝑘𝑗 (𝑝)

)︀
𝑘
→ 𝜓𝑗(𝑝) for every 𝑝 ∈ 𝑋

and on 𝐾𝑗:

𝜃 + 𝑖 𝜕 𝜕 𝜓𝑘𝑗 > −𝜖𝑘𝜃

for some positive sequence 𝜖𝑘 → 0. For more details on this see [2][Theorem 3.4]

Now, set 𝛿𝑘
.
= 1

1+𝜖𝑘
< 1, and define

𝜙𝑘𝑗
.
= 𝛿𝑘𝜓

𝑘
𝑗 + (1 − 𝛿𝑘)(1 + sup

𝐾𝑗+1

𝜓𝑗)
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If we restrict our function to 𝐾𝑗+1 we will have:

𝜙𝑘𝑗 ≥ 𝛿𝑘𝜓𝑗 + (1 − 𝛿𝑘)(1 + sup
𝐾𝑗+1

𝜓𝑗) = 𝛿𝑘𝜓𝑗 + (1 − 𝛿𝑘) sup
𝐾𝑗+1

𝜓𝑗 + 1 − 𝛿𝑘 >

> 𝛿𝑘𝜓𝑗 + (1 − 𝛿𝑘) sup
𝐾𝑗+1

𝜓𝑗 ≥ 𝜓𝑗

Which implies that for every 𝑘 ∈ N:

𝜙𝑘𝑗
⃒⃒
𝐾𝑗+1

> 𝜓𝑗
⃒⃒
𝐾𝑗+1

(3.19)

Again on 𝐾𝑗 we have:

𝜃 + 𝑖 𝜕 𝜕 𝜓𝑘𝑗 > −𝜖𝑘𝜃 =⇒ (1 + 𝜖𝑘)𝜃 + 𝑖 𝜕 𝜕 𝜓𝑘𝑗 > 0

=⇒ 0 < 𝜃 + 𝑖 𝜕 𝜕 𝛿𝑘𝜓
𝑘
𝑗 =

= 𝜃 + 𝑖 𝜕 𝜕[𝛿𝑘𝜓
𝑘
𝑗 + (1 − 𝛿𝑘)(1 + sup

𝐾𝑗+1

𝜓𝑗)] = 𝜃 + 𝑖 𝜕 𝜕 𝜙𝑘𝑗

obtaining

(𝜃 + 𝑖 𝜕 𝜕 𝜙𝑘𝑗 )
⃒⃒
𝐾𝑗
> 0 (3.20)

for every 𝑘 ∈ N.

By Dini’s theorem we have that on 𝐾𝑗 the pointwise limit of (𝜓𝑘𝑗 )𝑘, is actually an

uniform limit. That is:

𝜓𝑘𝑗
⃒⃒
𝐾𝑗

𝐶0

⇒
𝑘→∞

𝜓𝑗
⃒⃒
𝐾𝑗

(3.21)

Now, take 𝑘(𝑗) ∈ N large enough in order to the following conditions hold:

1. sup𝐾𝑗
|𝜓𝑘𝑗 − 𝜓𝑗| ≤ 1

𝑗
for every 𝑘 ≥ 𝑘(𝑗)

2. (1 − 𝛿𝑘(𝑗)) sup𝐾𝑗
|𝜓𝑘(𝑗)𝑗 | ≤ 1

𝑗

3. 𝜓
𝑘(𝑗)
𝑗

⃒⃒⃒
𝐾𝑗

< 𝜙𝑗−1

⃒⃒
𝐾𝑗

4. |(1 + sup𝐾𝑗+1
𝜓𝑗)(1 − 𝛿𝑘(𝑗)| ≤ 1

𝑗

Let’s check that there exists such a 𝑘(𝑗).
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Indeed, by (3.21) we have that sup𝐾𝑗
|𝜓𝑘𝑗 − 𝜓𝑗| → 0, and sup𝐾𝑗

|𝜓𝑘(𝑗)𝑗 | is bounded,

therefore we can find such a 𝑘(𝑗).

For the third point, we have that 𝜓𝑗 ≤ 𝜓𝑗−1, and by construction 𝜓𝑗−1 < 𝜙𝑗−1,

therefore it exists 𝜂𝑗 > 0 such that

0 < 𝜂𝑗 < 𝜙𝑗−1 − 𝜓𝑗 = 𝜙𝑗−1 − lim
𝑘
𝜓𝑘𝑗

hence there is 𝑘(𝑗) such that for 𝑘 ≥ 𝑘0(𝑗), 𝜙𝑗−1 − 𝜓𝑘𝑗 ≥ 𝜂𝑗 > 0 on 𝐾𝑗.

Lastly, |(1 + sup𝐾𝑗+1
𝜓𝑗) ≥ 1, and since 𝛿𝑘 → 1 we can find such 𝑘(𝑗).

Now, set 𝜙𝑗
.
= 𝜙

𝑘(𝑗)
𝑗 , and it remains to prove that 𝜙𝑗(𝑝) → 𝜙(𝑝) for every 𝑝.

Let 𝑝 ∈ 𝑋, take 𝑗0 ∈ N such that 𝑝 ∈ 𝐾𝑗0 , and we will have that for every 𝑗 ≥ 𝑗0

it holds:

|𝜙𝑗(𝑝) − 𝜙(𝑝)| ≤ |𝛿𝑘(𝑗)𝜓𝑘(𝑗)𝑗 (𝑝) − 𝜙(𝑝)| + |(1 + sup
𝐾𝑗+1

𝜓𝑗)(1 − 𝛿𝑘(𝑗)| ≤

≤ |(1 − 𝛿𝑘(𝑗))𝜓
𝑘(𝑗)
𝑗 | + |𝜓𝑘(𝑗)𝑗 (𝑝) − 𝜙(𝑝)| +

1

𝑗
≤

≤ 1

𝑗
+ |𝜓𝑘(𝑗)𝑗 (𝑝) − 𝜓𝑗(𝑝)| + |𝜓𝑗(𝑝) − 𝜙(𝑝)| +

1

𝑗
≤

≤ 3

𝑗
+ |𝜓𝑗(𝑝) − 𝜙(𝑝)| −→

𝑗→∞
0

Definition 3.28 (Log-like functions). Let 𝑋 be a compact complex manifold. Given

𝑝, 𝑞 ∈ 𝑋, 𝑝 ̸= 𝑞, a log-like function (centered at 𝑝 and 𝑞) is a function 𝜙𝑝,𝑞 : 𝑋 →

[−∞,∞[ such that

� 𝜙𝑝,𝑞 = 𝑛 log|𝑧 − 𝑝| in local coordinates around 𝑝

� 𝜙𝑝,𝑞 = 𝑛 log|𝑧 − 𝑞| in local coordinates around 𝑞

� 𝜙𝑝,𝑞 ∈ 𝐶∞(︀
𝑋 ∖ {𝑝, 𝑞}

)︀
Remark 3.29. A log-like function 𝜙𝑝,𝑞 is quasi-psh (it is psh near 𝑝 and 𝑞, and

smooth elsewhere).

43



Remark 3.30. Given a log-like function 𝜙𝑝,𝑞 on 𝑋, we have that 𝐽(𝜙) = 𝑚𝑝,𝑞, where

𝑚𝑝,𝑞 is the ideal of holomorphic functions that vanish at 𝑝 and 𝑞.

Corollary 3.31. Let (𝑋,𝜔) be a compact Kahler manifold, 𝐸 a holomorphic line

bundle on 𝑋 with metric ℎ, 𝜙𝑝,𝑞 a log-like function such that:

𝑖Θ(𝐸, ℎ) + 𝑖 𝜕 𝜕 𝜙𝑝,𝑞 > 0, and

𝑖Θ(𝐸, ℎ) > 0

Then there exists a surjective mapping:

𝐻0(𝑋,𝒪(𝐾𝑋 + 𝐸)) � (𝐾𝑋 + 𝐸)𝑝 ⊕ (𝐾𝑋 + 𝐸)𝑞

Proof. Since 𝑋 is compact there exists 𝜖 > 0 such that both inequalities hold:

𝑖Θ(𝐸, ℎ) + 𝑖 𝜕 𝜕 𝜙𝑝,𝑞 − 𝜖𝜔 > 0

𝜂
.
= 𝑖Θ(𝐸, ℎ) − 𝜖𝜔 > 0

By Theorem 3.27, 𝜙𝑝,𝑞 is 𝜂-regularizable.

By Theorem 3.25, we have that 𝐻1(𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗𝑚𝑝,𝑞) = 0.

Then observe that the short exact sequence of sheaves

0 𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙𝑝,𝑞) 𝒪(𝐾𝑋 + 𝐸) 𝒪(𝐾𝑋 + 𝐸) ⊗𝒪𝑋/𝐽(𝜙𝑝,𝑞) 0𝑖 𝜋

(3.22)

Gives a long exact sequence on the cohomology

𝐻0
(︀
𝒪(𝐾𝑋 + 𝐸)

)︀
𝐻0

(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
𝐻1

(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗ 𝐽(𝜙𝑝,𝑞)

)︀
(3.23)

Since the last term is 0, by exactness we have the surjective morphism

𝐻0(𝑋,𝒪(𝐾𝑋 + 𝐸)) � 𝐻0
(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
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Now, since 𝐽(𝜙𝑝,𝑞) = 𝑚𝑝,𝑞, we have that the stalk of 𝒪(𝐾𝑋 + 𝐸) ⊗ 𝒪𝑋/𝐽(𝜙𝑝,𝑞)

in each point 𝑥 /∈ {𝑝, 𝑞} is equal to zero, since (𝒪𝑋/𝑚𝑝,𝑞)𝑥 = 0. Therefore for each

small local extension, 𝑠, of 𝑠𝑝 ∈ 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗
(︀
𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
𝑝
satisfies

𝑠𝑥 = 0

for each 𝑥 ∈ 𝑈(𝑝) ∖ {𝑝} a neighborhoodof 𝑝. This gives us that for every 𝑠1 ∈

𝒪(𝐾𝑋 +𝐸)𝑝 ⊗
(︀
𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
𝑝
and 𝑠2 ∈ 𝒪(𝐾𝑋 +𝐸)𝑞 ⊗

(︀
𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
𝑞
we can define

𝑠 ∈ 𝐻0
(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
by:

𝑠𝑥 = 0, 𝑥 ̸= 𝑝, 𝑞

𝑠𝑝 = 𝑠1

𝑠𝑞 = 𝑠2

Hence, we have found a surjection:

𝐻0
(︀
𝑋,𝒪(𝐾𝑋 + 𝐸) ⊗𝒪𝑋/𝐽(𝜙𝑝,𝑞)

)︀
� 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗ (𝒪𝑋/𝐽(𝜙𝑝,𝑞))𝑝 ⊕𝒪(𝐾𝑋 + 𝐸)𝑞 ⊗ (𝒪𝑋/𝐽(𝜙𝑝,𝑞))𝑞

The result follows from:

(𝐾𝑋 + 𝐸)𝑝⊕(𝐾𝑋 + 𝐸)𝑞 = 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊕𝒪(𝐾𝑋 + 𝐸)𝑞 =

= 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗ C⊕𝒪(𝐾𝑋 + 𝐸)𝑞 ⊗ C =

= 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗ (𝒪𝑋/𝑚𝑝,𝑞)𝑝 ⊕𝒪(𝐾𝑋 + 𝐸)𝑞 ⊗ (𝒪𝑋/𝑚𝑝,𝑞)𝑞 =

= 𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗ (𝒪𝑋/𝐽(𝜙))𝑝 ⊕𝒪(𝐾𝑋 + 𝐸)𝑞 ⊗ (𝒪𝑋/𝐽(𝜙))𝑞

For a function 𝜙 such that 𝜙(𝑧) = 2𝑛 log|𝑧 − 𝑝| in local coordinates around 𝑝 and
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smooth elsewhere, we have that 𝐽(𝜙) = 𝑚2
𝑝, and then

𝒪𝑋/𝐽(𝜙))𝑝 → C⊕ 𝑇 *
𝑝𝑋

[𝑓 ] ↦→ (𝑓(𝑝), 𝑑𝑝𝑓)

is an isomorphism, which implies

𝒪(𝐾𝑋 + 𝐸)𝑝 ⊗ (𝒪𝑋/𝐽(𝜙))𝑝 = (𝐾𝑋 + 𝐸)𝑝 ⊗ (C⊕ 𝑇 *
𝑝𝑋)

Using exactly the same proof as above we conclude that there exists a surjective

mapping

𝐻0(𝑋,𝒪(𝐾𝑋 + 𝐸)) � (𝐾𝑋 + 𝐸)𝑝 ⊗ (C⊕ 𝑇 *
𝑝𝑋) (3.24)

Remark 3.32. In the proof of the Corollary 3.31, we could have avoided the use

of Theorem 3.25. To illustrate the point, let us prove that, for all fixed 𝑞 ∈ 𝑋, the

evaluation map:

𝐻0(𝑋,𝒪(𝐾𝑋 + 𝐸)) � (𝐾𝑋 + 𝐸)𝑞

is surjective. To this aim, choose an arbitrary 𝑠(𝑞) ∈ (𝐸 + 𝐾𝑋)𝑞, and let 𝑠 : 𝑈(𝑞) →

𝐸 + 𝐾𝑋 be a local holomorphic section around 𝑞 ∈ 𝑋, with 𝑠𝑞 = 𝑠(𝑞) ∈ (𝐸 + 𝐾𝑋)𝑞.

Let 𝜒 : 𝑋 → R a smooth function, such that 𝜒
⃒⃒
𝑋∖𝑉2(𝑞)

≡ 0 , and 𝜒
⃒⃒
𝑉1(𝑞)

≡ 1, where

𝑉1(𝑞) ⊂ 𝑉2(𝑞) are neighborhoods of 𝑞.

Define 𝑠
.
= 𝜒𝑠, as a global smooth section of 𝐾𝑋 + 𝐸, vanishing outside 𝑉2(𝑞).

Then 𝑣
.
= 𝜕 𝑠 is a global smooth section of ∧𝑛,1𝑇 *𝑋⊗𝐸, with the following properties:

� 𝑣
⃒⃒
𝑈(𝑞)∩𝑉1(𝑞)

≡ 0

� 𝑣
⃒⃒
𝑋∖𝑉2(𝑞)

≡ 0

In particular since 𝑣 is zero around 𝑞, it follows that, given a smooth function 𝜙 : 𝑋 ∖

{𝑞} → R, with 𝜙(𝑧) = 𝑛 log|𝑧 − 𝑞| around 𝑞, we have

� 𝑣 ∈ 𝐿2
𝜙(𝑋,∧𝑛,1𝑇 *𝑋 ⊗ 𝐸)
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Therefore, by Theorem 3.24, we have that there exists 𝑢 ∈ 𝐿2
𝜙(𝑋,𝒪(𝐾𝑋 + 𝐸)), such

that 𝜕 𝑢 = 𝑣. Such a function 𝑢 satisfies

𝜕 𝑢 = 0 near 𝑞

and since 𝑢 ∈ 𝐿2
𝜙, this implies that 𝑢𝑞 = 0.

To conclude take 𝜎
.
= 𝑠 − 𝑢. Clearly 𝜎 is a global section of 𝐾𝑋 + 𝐸, and holo-

morphic since 𝜕 𝜎 = 𝜕 𝑠− 𝜕 𝑢 = 𝑣 − 𝑣 = 0; moreover 𝜎𝑞 = 𝑠𝑞 − 𝑢𝑞 = 𝑠(𝑞).

3.4.2 The Kodaira Embedding Theorem

Theorem 3.33 (Kodaira Embedding Theorem). If 𝐿 is a positive line bundle over a

compact complex manifold 𝑋, then 𝐿 is ample.

Proof. Let ℎ0 be a metric on 𝐿 such that 𝑖Θ(𝐿, ℎ0) > 0. Define

𝐸
.
= −𝐾𝑋 +𝑚𝐿

for some 𝑚 ∈ Z+ to be chosen.

Since −𝐾𝑋 and 𝑚𝐿 inherit metrics of 𝑋 and 𝐿 respectively, we have that 𝐸 has

natural induced metric, ℎ, of curvature

Θ(𝐸, ℎ) = 𝑅𝑖𝑐(𝜔) + 𝑖𝑚Θ(𝐿, ℎ0)

Fix 𝑝, 𝑞 ∈ 𝑋, and consider a correspondent log-like function 𝜙𝑝,𝑞.

Now, choose 𝑚 such that

𝑅𝑖𝑐(𝜔) + 𝑖𝑚Θ(𝐿, ℎ0) + 𝑖 𝜕 𝜕 𝜙𝑝,𝑞 > 0

𝑅𝑖𝑐(𝜔) + 𝑖𝑚Θ(𝐿, ℎ0) > 0

Observe that such an 𝑚 can be found, since 𝑖Θ(𝐿, ℎ0) > 0, 𝑋 is compact, and

therefore therefore 𝑅𝑖𝑐(𝜔) as well as 𝜕 𝜕 𝜙𝑝,𝑞 are bounded. Then we can then apply
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(3.31) and similarly (3.24) to get the surjective mappings:

𝐻0(𝑋,𝒪(𝑚𝐿))
𝑟1
� (𝑚𝐿)𝑝 ⊕ (𝑚𝐿)𝑞 (3.25)

𝐻0(𝑋,𝒪(𝑚𝐿))
𝑟2
� (𝑚𝐿)𝑝 ⊗ (C⊕ 𝑇 *

𝑝𝑋) (3.26)

For every 𝑝 and 𝑞

Let 𝑠0, · · · , 𝑠𝑑 be a basis of 𝐻0(𝑋,𝒪(𝑚𝐿)) the holomorphic global sections of

𝑚𝐿. In a local holomorphic trivialization of 𝑚𝐿, 𝑒 : 𝑈(𝑝) → 𝑚𝐿, we have that

𝑠𝑖(𝑥) = 𝑔𝑖(𝑥)𝑒𝑥 for some 𝑔𝑖 : 𝑈(𝑝) → C, and 𝑥 ∈ 𝑈(𝑝). We define the following

holomorphic map

Φ: 𝑋 → C𝑃 𝑑

𝑥 ↦→ [𝑔0(𝑥) : · · · : 𝑔𝑑(𝑥)]

This is well-defined since by (3.26) we can find 𝑔𝑗(𝑥) ̸= 0 for some 𝑗, and if 𝑒 : 𝑉 (𝑞) →

𝑚𝐿 is a different trivialization, we have that there exists 𝑓 : 𝑉 (𝑞) → C* holomorphic

map such that 𝑠𝑖(𝑥) = 𝑔𝑖(𝑥)𝑓(𝑥)𝑒 for every 𝑖, therefore

[𝑔0(𝑥) : · · · : 𝑔𝑑(𝑥)] = [𝑓(𝑥)𝑔0(𝑥) : · · · : 𝑓(𝑥)𝑔𝑑(𝑥)]

We will prove that Φ is an embedding.

For any given 𝑝 ∈ 𝑋, by (3.26), we can find global holomorphic sections 𝜎0, · · · , 𝜎𝑛 ∈

𝐻0(𝑋,𝒪(𝑚𝐿)) such that in a local trivialization around 𝑝 𝜎0(𝑝) = 1, 𝜎𝑖(𝑝) = 0,

𝑑𝑝𝜎𝑗 = 𝑑𝑧𝑗𝑝. It follows that the set {𝜎𝑖}𝑛𝑖=0 is linearly independent in 𝐻0(𝑋,𝒪(𝑚𝐿)),

which implies that we can complete it to a base. Using this base in the definition

of Φ, and computing it in the charts (1, 𝜁1, . . . , 𝜁𝑛, . . . ) : 𝑉 ⊆ C𝑃 𝑑 → C𝑑+1 and

(𝑧1, . . . , 𝑧𝑛) : 𝑈(𝑝) ⊆ 𝑋 → C𝑛, we have that

𝜕(Φ1, . . . ,Φ𝑛)

𝜕(𝑧1, . . . , 𝑧𝑛)
̸= 0

Which implies that Φ is an immersion.
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It remains to prove that Φ is injective. Let 𝑝, 𝑞 ∈ 𝑋, 𝑝 ̸= 𝑞, by (3.25) we

have that we can find 𝜎0, 𝜎1 ∈ 𝐻0(𝑋,𝒪(𝑚𝐿)) such that 𝜎0(𝑝) = 0, 𝜎0(𝑞) = 1 and

𝜎1(𝑝) = 1, 𝜎1(𝑞) = 0, completing 𝜎0, 𝜎1 to a base of 𝐻0(𝑋,𝒪(𝑚𝐿)) and taking the

corresponding Φ it becomes clear that Φ is injective.

For the proof to be complete we need to asses the following problem: Every time

that we chose a basis of the global holomorphic sections, we changed the map Φ.

To solve this observe that if 𝑠0, · · · , 𝑠𝑑 and 𝑠0, · · · , 𝑠𝑑 are basis of 𝐻0(𝑋,𝒪(𝑚𝐿)),

then there exists a matrix 𝐴 ∈ 𝐺𝐿
(︀
𝐻0(𝑋,𝒪(𝑚𝐿))

)︀ ∼= 𝐺𝐿(𝑑 + 1,C) such that the

vectors

𝑠 = 𝐴𝑠

Define the associated map

𝑃𝐴 : C𝑃 𝑑 → C𝑃 𝑑

[𝑧0 : · · · : 𝑧𝑑] ↦→ [𝐴0,𝑗𝑧
𝑗, · · · , 𝐴𝑑,𝑗𝑧𝑗]

We then have that the following diagram is commutative

𝑋 C𝑃 𝑑

C𝑃 𝑑

Φ̃

Φ

𝑃𝐴
(3.27)

Where Φ̃ is given by the basis 𝑠0, · · · , 𝑠𝑑. It is then clear that since 𝑃𝐴 is a biholo-

morphism, it follows that Φ is an embedding/immersion/injective if and only if Φ̃ it

also is.

The theorem holds, since an injective immersion defined on a compact is an em-

bedding.
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Appendix A

Functional Analysis

Definition A.1. Let 𝐻 be a Hilbert space. We will say that a linear map 𝑇 : 𝐷(𝑇 ) ⊂

𝐻 → 𝐻 is an operator if the domain of 𝑇 , 𝐷(𝑇 ), is dense in 𝐻.

Given an operator 𝑇 on the Hilbert space 𝐻, let us denote by 𝐺(𝑇 ) the graph of

𝑇 , which is the linear subspace of the direct sum 𝐻 ⊕𝐻 defined by:

𝐺(𝑇 ) =
{︀

(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝐷(𝑇 )
}︀
.

The operator 𝑇 is said to be closed if 𝐺(𝑇 ) is a closed subspace of 𝐻 ⊕ 𝐻. By the

closed graph theorem, it 𝑇 is a closed operator whose domain is 𝐻, then 𝑇 is bounded.

An extension of the operator 𝑇 is an operator 𝑆 whose domain 𝐷(𝑆) cointains 𝐷(𝑇 ),

and such that 𝑆𝑥 = 𝑇𝑥 for all 𝑥 ∈ 𝐷(𝑇 ). An operator is said to be closable if it

admits a closed extension. It is not hard to show that 𝑇 is closable if and only if

the closure of 𝐺(𝑇 ) is a graph, i.e., iff there exists a (closed) operator 𝑆 such that

𝐺(𝑆) = 𝐺(𝑇 ). In this situation, 𝑆 is called the closure of 𝑇 , denoted by 𝑇 , and this

is the smallest closed extension of 𝑇 .

Definition A.2. Let 𝑇 be an operator on 𝐻, and let

𝐷(𝑇 *)
.
= {𝑣 ∈ 𝐻 : ∃𝑤𝑣 ∈ 𝐻 such that ⟨𝑇𝑢, 𝑣⟩ = ⟨𝑢,𝑤𝑣⟩ ∀𝑢 ∈ 𝐷(𝑇 )} (A.1)

Define 𝑇 *(𝑣)
.
= 𝑤𝑣, the density of 𝐷(𝑇 ) guarantees that there are no choices involving
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the definition of 𝑇 *, that is that 𝑤𝑣 is unique vector satisfying A.1.

Using the very definition of the adjoint 𝑇 *, it is easy to show that the following

equality holds:

𝐺(𝑇 *) =
[︀
𝐽
(︀
𝐺(𝑇 )

)︀]︀⊥
, (A.2)

where 𝐽 : 𝐻 ⊕ 𝐻 → 𝐻 ⊕ 𝐻 is defined by 𝐽(𝑥, 𝑦) = (−𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝐻. From

(A.2) we obtain easily that 𝐺(𝑇 *) is always a closed. Note that 𝐽 is a linear isometry;

in particular:

𝐺(𝑇 *)⊥ = 𝐽
(︀
𝐺(𝑇 )

)︀
, if 𝑇 is closed. (A.3)

Observe also that 𝐽 is a complex structure on 𝐻 ⊕𝐻, i.e., 𝐽2 = −Id.

Theorem A.3. If 𝑇 is a closed operator, then 𝑇 * is densely defined, and therefore it

is a closed operator. In this case, (𝑇 *)* = 𝑇 . Moreover, the following hold:

(a) ker𝑇 * = (Im𝑇 )⊥

(b) (ker𝑇 )⊥ = Im𝑇 *

Proof. In order to show that 𝐷(𝑇 *) is dense, we need to show that if 𝑥0 ∈
[︀
𝐷(𝑇 *)

]︀⊥
,

then 𝑥0 = 0. Since 𝑥0 ∈
[︀
𝐷(𝑇 *)

]︀⊥
, (𝑥0, 0) ∈

[︀
𝐺(𝑇 *)

]︀⊥
= 𝐽

(︀
𝐺(𝑇 )

)︀
. Thus:

(0, 𝑥0) = 𝐽(𝑥0, 0) ∈ 𝐽2
(︀
𝐺(𝑇 )

)︀
= −𝐺(𝑇 ) = 𝐺(𝑇 ),

which implies 𝑥0 = 0. Now, it is easy to see that (𝑇 *)* is an extension of 𝑇 . Using

(A.2) repeatedly, and the fact that 𝐽 is an isometry with 𝐽2 = −Id, we obtain:

𝐺
(︀
(𝑇 *)*

)︀
=

[︀
𝐽
(︀
𝐺(𝑇 *)

)︀]︀⊥
= 𝐽

(︀
[𝐺(𝑇 *)]⊥

)︀ by (A.3)
= 𝐽2

(︀
𝐺(𝑇 )

)︀
= 𝐺(𝑇 ),

which implies (𝑇 *)* = 𝑇 .

By definition:

ker(𝑇 *) =
{︀
𝑦 ∈ 𝐻 : ⟨𝑇𝑥, 𝑦⟩ = 0, ∀𝑥 ∈ 𝐷(𝑇 )

}︀
= (Im𝑇 )⊥,
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which proves (a).

Now, using the fact that (𝑇 *)* = 𝑇 , from (a) we obtain:

(ker 𝑇 )⊥ = ker
(︀
(𝑇 *)*

)︀⊥
=

(︀
Im𝑇 *)⊥

)︀⊥
= Im𝑇 *,

which proves (b).
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