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Abstract. In this paper we develop an analogue of the Berkovich analytification for
non-necessarily algebraic complex spaces. We apply this theory to generalize to arbitrary
compact Kähler manifolds a result of Chi Li, [Li22], proving that a stronger version of
K-stability implies the existence of a unique constant scalar curvature Kähler metric.
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Introduction

The conjecture. The study of algebraic and analytic properties of complex manifolds
has been an active field of research in the area of Kähler Geometry.

To approach many of the questions in this field, one requires generally results and
techniques from both Differential and Algebraic Geometry, which shows the connection
between those fields.

One of the most important questions in the area is the Yau–Tian–Donalson (YTD)
conjecture. It deals with the following question:

Question. Let (X,ω) be a Kähler manifold, and α
.
= [ω] be the cohomology class of ω.

Is there a Kähler metric ω′ ∈ α, in the same class as ω, such that its scalar curvature

Scal(ω′) ≡ s (0.0.1)

is constant?

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement No 94532.
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When X is a Fano variety, i.e. X is anticanonically polarized, Chen–Donaldson–Sun
[CDS15a, CDS15b, CDS15c] and Tian [Tia15] showed, using the continuity method, that
X admits a constant scalar curvature Kähler metric (cscK metric) if, and only if, X is
K-stable. Later other proofs became available, like [BBJ21], [Szé16, DS16], [CSW18], and
[DZ24] among others.

K-stability is an algebro-geometric notion that deals with the study of 1-parameter
degenerations of the manifold X, together with a numerical invariant. This notion is an
infinite dimensional analogue of stability in the sense of Geomtric Invariant Theory (GIT).
In that context, by the the Kempf–Ness Theorem, studying the stability of an orbit of a
hamiltonian group action is equivalent to finding zeros of an associated moment map.

The general –stil open– version of the Yau–Tian–Donaldson conjecture reads:

Conjecture (YTD Conjecture). There exists a unique constant scalar curvature Kähler
(cscK) metric in α if, and only if, (X,α) is uniformly K-stable in the sense of [SD18,
DR17b].

A variational approach. The PDE of equation (0.0.1) has a variational interpretation
that will play the key role in our approach to the YTD Conjecture. This approach was
developed by many authors, see [BB17], [BBE+19], [Che00], [Dar15], and [DR17a] for
some important work. We describe this approach now.

By the ∂∂-lemma, if ω′ ∈ α is a Kähler metric in the cohomology class of ω, then
ω′ − ω = ddcu, for u : X → R a smooth function satisfying:

ω + ddcu > 0.

We denote ω′ by ωu, and we call u the potential of ω′. In these terms, Equation (0.0.1)
translates to a fourth order elliptic PDE on the potential.

The space of the potentials, in a given class [ω], is denoted by

H(ω) .=
{
u : X → R

∣∣ u smooth, and ω + ddcu > 0
}
.

In order to have a good geometric setting to carry out the variational calculus for
studying this PDE, we must consider a completion1 of H(ω), the space E1(ω).

By the groundbreaking work of Chen–Cheng [CC21a, CC21b], we know that there
exists a unique solution for (0.0.1) if and only if a given functional, called the Mabuchi
functional, Mω : E1(ω)→ R, satisfies:

Mω ≥ δJω − C, (0.0.2)

for some C, δ > 0, and where Jω is a “norm like” functional. If it is the case, Mω is said
to be coercive.

In this setting the YTD conjecture can be stated as follows:

Conjecture (YTD Conjectrue). The Mabuchi functional is coercive if, and only if, (X,α)
is uniformly K-stable in the sense of [SD18, DR17b].

Remark 0.0.1. When X is a Kähler variety of klt singularities and admits a resolution
of singularities of nef relative anticanonical bundle, by combining works of [BJT24, PT24],
we have that the coercivity of the Mabuchi functional implies the existence of a positive
closed current in α, that is a cscK metric on the regular locus, and has bounded potential.
In this generality, the above conjecture is completly open.

1for the Darvas metric d1, see [Dar15].
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Varional approach in the Fano setting. In the Fano case, Berman–Boucksom–Jonsson, in
[BBJ21], used the variational approach to prove the conjecture. Their proof relied on two
observations:

• It was already known, in the Fano case, that the existence of a cscK metric is
equivalent to the coercivity of a different –and simpler– functional defined on the
space of potentials D: E1(ω)→ R, the Ding functional.
• By [BHJ17], there is a non-archimedean description of K-stability: there is a non-
archimedean counterpart of H(ω) on the Berkovich analytification of X, Xan,
denoted HNA, in which we can define a non-archimedean analogue of the Ding
functional, DNA : HNA → R, and K-stability becomes equivalent to the coercivity
of this functional.

Thus, using the simpler analysis of the Ding functional, Berman–Boucksom–Jonsson
prove that the slope formulas for psh rays of algebraic singularities guarantee the coer-
civity of the functional D, as soon as one supposes the coercivity of the non-archimedean
counterpart DNA.

In the general case the conjecture is still open, [SD18] and [DR17b] independetly proved
–in the Kähler case– one direction of the conjecture: the coercivity of the Mabuchi func-
tional implies uniform K-stability.

The best result in the reciprocal direction is due Chi Li: in [Li22], he adapted the
strategy of Berman–Boucksom–Jonsson to the Mabuchi functional, getting a weaker form
of the open direction of the YTD conjecture for projective manifolds, i.e. he proves that
stronger version of K-stability implies the coercivity of the Mabuchi functional.

The key ingredient in Chi Li’s paper consists of proving that a distabilizing ray, a ray of
functions that contradicts the coercivity of the Mabuchi functional Mω, must be amaximal
geodesic ray, that is, it must come from a non-archimedean potential of finite energy :
Like for H(ω), the set of potentials of finite energy E1(ω) also has a non-archimedean
counterpart, E1,NA, and there is a correspondence between such potentials of finite energy
and maximal geodesic rays, a disguished class of rays in E1(ω). Having this in hand, he
uses the –finer– slope formulas for maximal rays, and then the strategy of [BBJ21] follows
in this general polarized case.

The goal of this paper is to generalize this result of Chi Li to the transcendental setting.
We prove:

Theorem A. Let (X,α) be a compact Kähler manifold that is uniformly K-stable over
E1. Then, α contains a unique cscK metric.

General strategy and main results. By the work of Sjöström Dyrefelt and Dervan–
Ross, there exists a theory of K-stability for Kähler manifolds, but in order to adapt the
strategy of Chi Li –or ultimately of BBJ–, one needs a non-archimedean theory for a
transcendental complex manifold, where the language of K-stability can be translated to.

We hence start by developping this non-archimedean theory. More precisely, we as-
sociate to a complex manifold, X, a “non-archimedean” compact Hausdorff topological
space of semivaluations on X, defined as the tropical spectrum of the set of coherent ideals
of X, which we denote by Xℶ. This notion coincides with the Berkovich analytification of
X whenever the latter is a proper algebraic variety2, and moreover it also has a description
as the limit of a Dual Complex, just like in algebraic setting.

2We recall that if X is a proper scheme over a trivially valued field, its Berkovich analytification Xan

is defined as the set of all valuations v : C(Y )∗ → R, for Y ⊆ X a subvariety, and C(Y ) its function field.
When X is a compact complex manifold, we may have that its function field is trivial, and moreover it
may not have any non-trivial subvarieties. We cannot use this approach to define Xℶ.
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The most important class of semivaluations is the one of the divisorial valuations, which
are given by

OX ⊇ I 7→ ordF (I · OY )

for F ⊆ Y → X a smooth irreducible reduced divisor on a normal model of X. The next
main theorem we prove establishes the density of the set of divisorial valuations, Xdiv, on
Xℶ.

Theorem B. Xdiv is dense in Xℶ.

The proof of Theorem B crucially requires a description of the divisorial valuations of
X as the C∗-invariant divisorial valuations on X×P1. We get this description by studying
the divisorial valuations on “local algebraic models” of X, that is, for each p ∈ X, we
study the divisorial valuations of the schme Xp

.
= SpecOX,p.

After establishing some first basic results, we develop a non-archimedean pluripoten-
tial theory for Xℶ, key for the non-archimedean approach of [BBJ21]. We define non-
archimedean psh functions, and a mixed energy coupling, that allow us to:

(1) Use the synthetic pluripotential theory of [BJ23].
(2) Define non-archimedean versions of classical functionals like: the Monge–Ampère

energy ; the twisted energy ; the entropy ; and finally the J functional.

We then denote by E1(α) the set of non-archimedean potentials of finite Monge–Ampère
energy.

In the algebraic setting this theory coincides with the one of [BJ22]. In the transcen-
dental setting Darvas–Xia–Zhang develop a non-archimedean pluripotential theory for a
big class, on [DXZ23], that coincides with ours on a Kähler class. Their non-archimedean
pluripotential theory is not over a “non-archimedean space”, and hence ours is a more di-
rect analogue of the algebraic theory. In particular, we can make sense of Monge–Ampère
equations in our case, while it is not clear how to interpret it in their formalism.

Like in [BBJ21], we have that the pluripotential theory developed here behaves well with
the complex one: to each psh ray of potentials Ut we have associated a non-archimedean
psh function Uℶ. Reciprocally, to each non-archimedean psh function of finite energy
φ ∈ E1(α), there exists a psh ray Vt such that V ℶ = φ. Moreover, there exists a 1to1
correspondence between maximal geodesic rays in E1(ω) and non-archimedean potentials
in E1(α). This is the basis of the correspondence with the theory of [DXZ23].

For maximal geodesic rays we get formulas of the type:

lim
s→∞

F(Us)

s
= Fℶ(Uℶ), (0.0.3)

for F either E, Eη, or J, and an inequality for the entropy:

lim
Hω(Us)

s
≥ Hα(U

ℶ). (0.0.4)

Adding all together we get:

lim
s→∞

Mω(Us)

s
≥ Mα(U

ℶ),

where Mα is the non-archimedean Mabuchi functional, the non-archimedean counterpart
of Mω providing the good inequality to conclude the proof of Theorem A.

Indeed, just like in the projective setting, if Mω is not coercive we can find a geodesic ray
Ut ∈ E1 such that t 7→ Mω(Ut) is decreasing for t large. We call such a ray a destabilizing
geodesic ray.
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Analogously to [Li22], every destabilizing ray is maximal, that is, it is a geodesic ray
coming from a non-archimedean potential of finite energy, φ ∈ E1(α). In particular:

lim
t→∞

Mω(Ut)

t
≥ Mα(φ). (0.0.5)

Like this, we prove that if (X,ω) is such that Mα : E1(α) → R is positive, then there
exists a unique cscK metric on α, proving Theorem A.

The YTD conjecture and Chi Li’s result. In the non-archimedean terms of the
present paper K-stability reads as the coerciviness of the non-archimedean Mabuchi func-
tional:

Definition 0.0.2. The pair (X,α) is uniformly K-stable if there exists a δ > 0 such that

Mα(φ) ≥ δJα(φ)

for every φ ∈ H(α), that is if Mα is coercive over H(α).

We have proved that a stronger version of K-stability, uniform K-stability over E1(α),
implies the coerciveness of the K-energy, and hence the existence of an unique cscK metric.
In order to prove the conjecture one would need to prove that

Mα|H(α) ≥ δJα|H(α) =⇒ Mα|E1(α) ≥ δ′Jα|E1(α)

for some δ, δ′ > 0.
In [Li22], Chi Li proves that, in the projective case, one has

Mα|CPSH(α) ≥ δJα|CPSH(α) =⇒ Mα|E1(α) ≥ δJα|E1(α)

and hence he has an intermediate version of K-stability that implies the coerciveness of
the K-energy.

We were not able to get a sharper result, like this one of Chi Li, in the transcendental
setting. His result relies on the solution of the non-archimedean Monge–Ampère equation
of [BFJ15] that we don’t have at our disposal.

Furthermore, in the same paper Chi Li also gives a version of his theorem when X
admits automorphisms, which we don’t treat in present paper.

Organization of the paper.

• In Section 1 we define our “non-archimedean analytification” of a locally ringed
space, we do some basic constructions and we compare it to Berkovich analytifi-
cation of a scheme.
• Section 2 deals with the study of Xℶ, when X is a normal compact complex
space. We prove Theorem B, getting a theory which resembles closely the one of
the Berkovich analytification of a projective variety over C.
• Section 3 contains a dual complex description of Xℶ, analogue to the one found
in [BJ22].
• Section 4 is devoted to developing the non-archimedean pluripotential theory of
Xℶ.
• In Section 5 we compare the pluripotential theory of Xℶ with the transcendental
non-archimedean theory of [DXZ23, Xia24] , and get slope formulas, generalizing
the results of [SD18, DR17b, Li22].
• In Section 6 we define strong K-stability, and prove Theorem A, the main result
of the paper.
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Notations and Conventions

Through out this paper, a ring will always be unital and commutative. By an analytic
variety we mean a reduced and irreducible complex analytic space. Given X an analytic

variety we denote by X̃ the normalization of X, cf. [GR12, Chapter 6]. Moreover, we
simply call ideal a coherent ideal sheaf of OX . We call flag ideal a C∗-invariant fractional
coherent ideal of OX×P1 , supported on X × {0}, and we denote the set of such ideals by
F .

A flag ideal a ∈ F can be written as a sum:

a =
∑
λ∈Z

aλt
λ, (0.0.6)

for (aλ)λ an increasing sequence of ideals of X such that aλ = 0 for λ≪ 0 and aλ = OX
for λ≫ 0.

An ideal on X will typically be denoted by I, J or K. An ideal on X×P1 will typically
be denoted either a or b.

An ideal on X I is a prime ideal if given J,K ideals on X satisfying:

I ⊇ J ·K,
then either I ⊇ J , or I ⊇ K. An ideal is prime if, and only if, it is a radical ideal and
the underlying analytic subspace is irreducible. That is, prime ideals of X are exactly the
ideals attached to analytic subvarieties.

Let X be an analytic variety, I a coherent ideal, and q ∈ Q, a map g : X → [−∞,+∞[
has singularities of type Iq if locally:

g(z) = q log

k∑
i=1

|fi|+O(1),

for f1, . . . , fk local generators of I.
If X is a Kähler manifold, we denote by K(X) the set of Kähler forms on X, by

Pos(X) ⊆ H1,1(X) the set of Kähler classes, and Nef(X) the set of nef classes, i.e. the

closure Pos(X) ⊆ H1,1(X). Moreover, if we have fixed a holomorphic map f : X → Y , we
denote by Pos(X/fY ) = Pos(X/Y ) the set of classes which are f -relatively Kähler, and
analogously Nef(X/fY ) = Nef(X/Y ) the set of nef classes relatively to Y .

For ω ∈ K(X), we denote by Ric(ω) its Ricci form. The trace of Ric(ω) is denoted by
Scal(ω), the scalar curvature, and the cohomological quantity:

n · [Ric(ω)] · [ω]
n−1

[ω]n
,

the average of the scalar curvature, by s.

1. Berkovich spectra as tropical spectra

1.1. Berkovich spectrum. Let X be an affine scheme, that is X = SpecR for some
ring R.

If we consider R as a normed ring, with the trivial norm (the norm that to a ∈ R
associates ∥a∥triv that is 1 if a ̸= 0, and 0 otherwise), then R can be seen as a Banach
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ring. In particular, we can associate to it a compact Hausdorff topological space, the
Berkovich spectrum of R, first defined in [Ber90].

Definition 1.1.1. The Berkovich spectrum associated to (R, ∥·∥triv), denoted byM(R),
is the set of bounded multiplicative semi-norms on R, i.e.

N ∈M(R) ⇐⇒ N ≤ ∥·∥triv,

equipped with the Hausdorff topology of pointwise convergence.

The topology of pointwise convergence is the subspace topology given by natural in-
clusion

M(R) ⊆
∏
a∈R

[0, 1], (1.1.1)

as an easy consequence of Tychonoff’s theoremM(R) is compact.
To a semi-norm N ∈ M(R) we can attach a semivaluation on R, by taking − logN .

Thus, equivalently, we can consider the Berkovich spectrum of R as the set of semival-
uations of R with values on [0,+∞], which, following the notation of [Thu07], we will
denote by Xℶ, that is:

Xℶ .
=

 v(a · b) = v(a) + v(b)
v : R→ [0,+∞] v(a+ b) ≥ min{v(a), v(b)}

v(1) = 0 & v(0) = +∞

 . (1.1.2)

The construction is functorial, that is, given Y another affine scheme and a morphism
f : Y → X, we can associate a continuous map between Y ℶ and Xℶ:

fℶ : Y ℶ → Xℶ

v 7→ fℶ(v) : a 7→ v (f(a)) ,

compatible with compositions.
The Berkovich spectrum comes with a natural class of continuous functions. Given

a ∈ R, we associate |a| :M(R)→ R+ by the formula N 7→ N(a), or equivalently:

log|a| : Xℶ → [0,+∞]

v 7→ −v(a).

The notation is so that exp(log|a|) = |a|.
There is an equivalent formulation of Berkovich spectrum of a trivially normed ring,

namely the tropical spectrum of the semi-ring of its ideals of finite type.
Now we study such an object.

1.2. Tropical spectrum. For more details on this section see Appendix A.

Definition 1.2.1. Let (S,+, ·) be a semi-ring, and consider the semi-ring of the extended
real line (]−∞,+∞] ,min,+), we define the tropical spectrum of S as the topological space
given by the set of tropical characters, i.e. the semi-ring morphisms from S to ]−∞,+∞]:

TropSpecS
.
=

 χ(a · b) = χ(a) + χ(b)
χ : S → ]−∞,+∞] χ(0) = +∞

χ(a+ b) = min{χ(a), χ(b)}

 , (1.2.1)

endowed with the pointwise convergence topology. Moreover, if S has a multiplicative
identity we ask χ(1) = 0, this is equivalent χ not identically +∞.
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As before, with this topology TropSpecS is compact and Hausdorff.

The tropical spectrum comes with a natural order relation, and a natural order com-
patible R>0-action, the usual order of functions, and multiplication by scalar action.
Moreover, the R>0 action on Xℶ, induces an action on C0(Xℶ,R), for t ∈ R>0 we define:

(t · φ) (v) = tφ(t−1v). (1.2.2)

Remark 1.2.2. For any semi-ring S, TropSpecS is non-empty. Indeed, we define
χtriv : S → [0,+∞], by the formula:

χtriv(a) = 0, for every a ∈ S \ {0}.
It is easy to see that χtriv is a semivaluation, and, moreover, it is a fixed point of the
R>0-action.

1.2.1. Comparison with the Berkovich spectrum. Now, let R be a ring, and I (R) be the
set of ideals of finite type of R. Together with the usual operations of sum and product
I (R) can be seen as a semi-ring. Moreover, as an easy conseuqence of the algebraic
structure of I (R), its tropical characters are all positive, that is:

TropSpecI (R) =

 χ(I · J) = χ(I) + χ(J)
χ : I (R)→ [0,+∞] χ(I + J) = min{χ(I), χ(J)}

χ(R) = 0 & χ(0) = +∞


,

see Appendix A for more details.

There is a natural continuous map:

TropSpecI (R)→ (SpecR)ℶ ,

that assigns to each tropical character χ ∈ TropSpecI (R) the semivaluation:

R ∋ a 7→ χ(a ·R).

Proposition 1.2.3. The natural map, TropSpecI (R) → (SpecR)ℶ, is a homeomor-
phism.

Proof. Since TropSpecI (R) is compact it is enough to check that the map is bijective.

The desired inverse function, (SpecR)ℶ → TropSpecI (R), is the one that assigns to

v ∈ (SpecR)ℶ the character:
I (R) ∋ I 7→ min

f∈I
v(f),

where the minimum is achieved on any (finite) set of generators. □

With this “tropical” characterization of the Berkovich spectrum of a ring, we will extend
this construction to locally ringed spaces.

1.3. Semivaluations on locally ringed spaces. Let (X,OX) be a locally ringed topo-
logical space, and denote by IX the set of OX -ideals locally of finite type. The set IX

has a semi-ring structure given by the usual addition and multiplication of ideal sheaves,
and we define:

Definition 1.3.1. Let X be a locally ringed space, we define the space of semivaluations
on X as the tropical spectrum of IX

3:

Xℶ .
= TropSpecIX =

 v(I · J) = v(I) + v(J)
v : IX → [0,+∞] v(I + J) = min{v(I), v(J)}

v(OX) = 0 & v(0X) = +∞

 (1.3.1)

3Again by Appendix A we have that all the tropical characters are positive.
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Some geometrically relevant examples are as follows:

Example 1.3.2. (1) If X is a scheme of locally finite type over a field k, equiped with
the trivial absolute value, Xℶ is a subset of its Berkovich analytification, Xan, the
set of semivaluations centered on X. This construction goes back to [Ber90] and
[Thu07]. Whenever the scheme is proper, by the valuative criterion of properness
Xℶ = Xan.

(2) If X is a complex analytic space, Xℶ is an analogue of the Berkovich analytification
of algebraic varieties over C. The study of Xℶ will be done on Section 2, and will
be the central object of study of the present paper.

(3) If X is a Berkovich space we can also associate to it an “analytified” Xℶ.

Here again the construction is functorial: a morphism f : (X,OX)→ (Y,OY ), induces
a mapping:

f∗ : IY → IX

which in turn induces a continuous map:

fℶ : Xℶ → Y ℶ.

Remark 1.3.3. If X is a proper algebraic variety over C, the GAGA theorems –for the
Berkovich and complex analytifications– allow us to compare (Xan)ℶ, (Xhol)

ℶ and Xℶ,
where Xhol denotes the usual complex analytification.

Indeed, the theorems provide us with morphisms of ringed spaces between Xhol, X and
Xan, which induce a 1to1 correspondence on the set of coherent ideal sheaves. Therefore
we have canonical homeomorphisms:

(Xan)ℶ ≃ Xℶ ≃ (Xhol)
ℶ.

Moreover, as explained before, for a proper C-scheme Xan coincides with Xℶ.

1.3.1. Properties of the functor ℶ. Let X be a locally ringed space, and I ⊆ OX be an
ideal of locally finite type. Consider Y

.
= supp (OX/I) ⊆ X, together with the sheaf

OY
.
= (OX/I) |Y We thus have that the inclusion

i : (Y,OY ) ↪→ (X,OX)
is a ringed space morphism, and moreover we have the following lemma.

Proposition 1.3.4. Let Y ⊆ X as above, then

iℶ : Y ℶ → Xℶ

is an embedding.

Proof. Since Y ℶ is compact it is enough to prove that iℶ is injective.
By definition, the morphism

i∗ : OX ↠ OY
is surjective.

Therefore, if v, u ∈ Y ℶ, with v ̸= u, then there exists an ideal locally of finite type
J ∈ IY such that v(J) ̸= u(J). Moreover, K

.
= (i∗)−1(J) ⊆ OX is an ideal of locally

finite type, and
iℶv(K) = v(J) ̸= u(J) = iℶu(K).

□

Remark 1.3.5. We have just seen that the ℶ functor preserves embeddings, however it
does not preserve open mappings.

In point of fact, if U ⊆ X then Uℶ will be a compact subset of Xℶ, even if U is open
on X.
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1.3.2. Examples of semivaluations in Xℶ.

Example 1.3.6. Let p ∈ X, we denote by Xp the affine scheme SpecOX,p.
We have a natural continuous map from the set of local semivaluations at p to the set

of global semivaluations on X, that to each v ∈ Xℶ
p assigns the valuation:

IX ∋ I 7→ vp(I)
.
= v(Ip),

where Ip denotes the stalk of I at p.

Remark 1.3.7. If we suppose that the local ring OX,p is noetherian (or at least its
maximal ideal of finite type), the map

v 7→ vp

is injective on the set of semivaluations centered at p, that is the set of semivaluations
such that v(mp) > 0.

Indeed, if v, v′, centered at p, are such that there exists an ideal J ⊆ OX,p with

v(J) ̸= v′(J),

then, for every k ∈ N consider the ideal

Jk
.
= J +mk

p ⊆ OX,p.

Since Jk is primary at p it extends to a global ideal, by triviality at any other point. Hence

vp(Jk) = v(Jk) = min{v(J), k · v(mp)}
v′p(Jk) = v′(Jk) = min{v′(J), k · v′(mp)},

for every k. Letting k → +∞, it follows that

lim
k→∞

vp(Jk) = v(J), lim
k→∞

v′p(Jk) = v′(J).

We thus have vp(Jk) ̸= v′p(Jk) for k ≫ 1, and hence vp ̸= v′p.

1.4. PL functions. Just like in the affine case, the spaceXℶ comes with a natural class of
functions, which we will call the piecewise linear functions. The terminology will become
clear in Section 3.1.

Definition 1.4.1. Let I ∈ I be an ideal locally of finite type, we have a function
log|I| : Xℶ → [−∞, 0] that maps:

Xℶ ∋ v 7→ log|I| (v) .= −v(I).

Clearly, for every ideal I the function log|I| is monotone decreasing (with respect to
the natural partial order on Xℶ). Moreover:

log|I · J | = log|I|+ log|J |, log|I + J | = max{log|I|, log|J |}. (1.4.1)

Definition 1.4.2. The set of functions ψ : Xℶ → R, of the form

v 7→ 1

m
max {log|Ii|(v) + ki} (1.4.2)

for I1, . . . , IN ideals, and integers m, k1, . . . , kN ∈ Z, is denoted PL+
(
Xℶ), and the Q-

vector space it generates PL(Xℶ) ⊆ C0
(
Xℶ,R

)
.

An element of PL(Xℶ) will be called a piecewise linear function, we denote PLR(X
ℶ)

.
=

PL(Xℶ)⊗Q R.

Lemma 1.4.3. PL+(Xℶ) separates points.
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Proof. If v, w ∈ Xℶ are distinct, then there exists I ∈ I such that v(I) ̸= w(I), with no
loss of generality we can assume w(I) < v(I), and thus taking

ℓ ∈ ]w(I), v(I) [
⋂
Q,

and φ
.
= max{log|I|,−ℓ} ∈ PL(Xℶ), we have φ(v) = −ℓ < −w(I) = φ(w). □

Proposition 1.4.4. PL(Xℶ) is dense in C0(Xℶ,R)

Proof. Since PL is a Q-linear subspace of C0 stable by max, containing the (Q-) constants,
and separating points, the result follows from the lattice version of the Stone-Weierstrass
Theorem. □

2. Semivaluations on a complex space X

In this section we study Xℶ attached to a compact analytic variety X. From now on
X will always denote such a space.

For a complete reference on the more standard algebraic setting see [BJ22], most of the
results proved here, are direct analogues of results found there.

We recall the defintion of Xℶ:

Xℶ =

 v(I · J) = v(I) + v(J)
v : IX → [0,+∞] v(I + J) = min{v(I), v(J)}

v(OX) = 0 & v(0X) = +∞

 ,

where IX denotes the set of ideals locally of finite type, that for a complex space coincides
with the set coherent ideals by Oka’s theorem.

We call an element, v ∈ Xℶ, a semivaluation. For D ⊆ X an effective divisor, and
v ∈ Xℶ we set:

v(D)
.
= v (OX(−D)) .

2.1. Support and center of a semivaluation.

Lemma 2.1.1. Let v ∈ Xℶ be a semivaluation, then there exist unique coherent ideals
Is(v), Ic(v) that satisfy

v(Is) =∞, and v(Ic) > 0, (2.1.1)

and are maximal with this property. Moreover, Is(v) and Ic(v) are prime ideals.

Proof. Let S ⊆ IX be the set of ideals on which v is infinite, C the set on which v is
positive, and take:

Is
.
=
∑
J∈S

J, and Ic
.
=
∑
J∈C

J.

By the strong noertherian property, Is and Ic are coherent, and by construction satisfy
(2.1.1).

For primality, if J an K are ideals on X, such that J · K ⊆ Ic(v), then 0 < v(Ic) ≤
v(J ·K) = v(J) + v(K) =⇒ either 0 < v(J) or 0 < v(K), and hence either J ⊆ Ic or
K ⊆ Ic, which implies that Ic is prime. We proceed similarly for Is. □

Definition 2.1.2. Let v ∈ Xℶ, we denote by SX(v) = S(v), the support of v, the
subvariety of X given by Is. In the same fashion, we denote by ZX(v) = Z(v), the
central variety of v, the subvariety attached to Ic.

Remark 2.1.3. Since Is ⊆ Ic it follows that Z(v) ⊆ S(v).
Moreover, for any p ∈ X the global ideal mp is maximal, and thus

ZX(v) = {p} ⇐⇒ v(mp) > 0, and SX(v) = {p} ⇐⇒ v(mp) =∞.
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It is easy to see that the support and the center are well-behaved under inclusions.
If v is finite valued on nonzero ideals, i.e. SX(v) = X, then we will say that v is

valuation on X. We will denote the set of valuations by Xval. The support thus give us
the following decomposition

Xℶ =
⊔
Y⊆X

Y val (2.1.2)

where Y ranges over all the subvarieties of X.
We can think the set of valuations centered at {p} in terms of the Example 1.3.6:

Example 2.1.4. The assignment

(Xp)
ℶ ∋ v 7→ vp ∈ Xℶ

induces a bijection from the set of local semivaluations centered at p to the set of global
semivaluations of X centered at p.

Indeed, by Remark 2.1.3 it is clear that the mapping sends semivaluations centered at
p to semivaluations centered at p.

On the other hand, if ZX(v) = {p}, f ∈ OX,p, and If the local ideal generated by f .
We denote

Ik
.
= If +mk

p

and observe:

(1) Ik can be extended to a global ideal, just by triviality outside p.
(2) Ik+1 = Ik +mk+1

p ⊆ Ik.
We define ν(f) as the decreasing limit:

ν(f)
.
= lim

k→∞
v(Ik) = lim

k→∞
min{v(Ik−1), k · v(mp)} ∈ [0,+∞].

It is easy to see that ν is a valuation and that νp = v.

In the next section we will use the above example to reconstruct Xℶ from (Xp)
ℶ for

every p, whenever X a smooth analytic curve.

Remark 2.1.5. A locally ringed space (X,OX) satisfies the strong noetherian property
if locally every increasing chain of OX-ideals, locally of finite type, is locally stationary.

This is the property needed to defined the center and support of a semivaluation, since
Lemma 2.1.1 holds in this case.

Proposition 2.1.6. If π : Y → X is a bimeromorphic morphism, the map

πℶ : Y ℶ → Xℶ

induces a bijection Y val ≃ Xval.

Proof. We first observe that πℶ maps valuations to valuations: if v ∈ Y ℶ is finite valued
on the set of non-zero ideals of Y , then we need to check that, for a non-zero ideal I of
X, π−1(I) is not zero. Let U ⊆ X be an open set such that I is not zero, then π−1(U) is
an open set bimeromorphic to U , and

π−1I (U) = {0} ⇐⇒ π(U) ⊆ ZI ,
where ZI is the zero locus of I, that has strictly positive codimension on U , therefore
π−1I ̸= 0. Thus πℶ(v)(I) < +∞, for I a non-zero ideal on X.

Let’s prove the that πℶ induces the desired bijection.
First suppose that there exists an anti-effective divisor E ⊆ Y that is π-ample. Then

for every ideal of Y , J ∈ IY , choosingmJ ∈ N sufficiently large, J ·OY (E)mJ is π-globally
generated, that is

π∗IJ = J · OY (E)mJ , (2.1.3)
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for some ideal of X, IJ ∈ IX . Since OY (E) is also π-globally generated we can also find
K ∈ I such that

π∗K = OY (E).

Hence, given vX ∈ Xval the function:

IY ∋ J 7→ vX (IJ)−mJvX (K) 4 (2.1.4)

is a valuation on Y , which we will denote by vY , such that πℶ(vY ) = vX .
If, for v, w ∈ Y val, πℶ(v) = πℶ(w), then for every J ideal on Y :

v(J) = v (J · OY (E)mJ )−mJv (OY (E))

= v(π∗IJ)−mJv(π
∗K)

= πℶ(v)(IJ)−mJπ
ℶ(v)(K)

= πℶ(w)(IJ)−mJπ
ℶ(w)(K)

= w(π∗IJ)−mJw(π
∗K)

= w (J · OY (E)mJ )−mJw (OY (E)) = w(J),

which implies that v = w.
If Y does not admit a divisor E as above, by Hironaka, we can find Y ′ a smooth complex

analytic space:

Y ′

Y

X

µ

ν

π

such that µ is a sequence of blow-ups of smooth center, and ν is a bimeromorphic mor-
phism.

Thus taking Eµ the exceptional divisors of µ, we have –by the Negativity Lemma of
[KM98, Lemma 3.39]– that Eµ will be anti-effective, and relatively ample, giving the
bijection

(Y ′)val

Y val

Xval

νℶ

µℶ

πℶ

(2.1.5)

which implies that πℶ|Y val is surjective on Xval, and that νℶ|(Y ′)val is injective. In turn,
the same argument gives the surjection

νℶ : (Y ′)val ↠ Y val.

Since µℶ and νℶ induce bijections on the set of valuations, so does πℶ. □

4Observe that we can take the difference because vX is a finite valued.
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2.2. Integral closure of an ideal and PL functions. In this section we can be in
a slightly more general setting of either complex analytic spaces or excellent schemes of
equi-characteristic 0. The two examples, we have in mind are complex analytic spaces,
and the the scheme SpecOCn,0.

For simplicity of the exposure from here on X will be of normal singularities, see [GR12]
for a complete reference on normal complex spaces.

Definition 2.2.1. Let I ∈ IX , we consider I the integral closure of I to be the ideal
given locally by all the elements f ∈ OX that satisfy a polynomial equation

fd =
d−1∑
i=0

aif
i (2.2.1)

for ai ∈ I.

It turns out that for complex analytic spaces, or excellent schemes as above, the ideal
I is a coherent ideal, and hence I ∈ IX .

This follows indeed from the following geometric description of the integral closure of
an ideal, that will be useful later, given by the follwoing results:

Proposition 2.2.2. Let I ∈ I , ν : Y → X the normalized blow-up of X along I, and
E ⊆ Y the exceptional divisor. We then have that ν∗(OY (−E)) = I.

Proof. See [Laz17, Proposition 9.6.6] □

Corollary 2.2.3. Let µ : Y → X be a projective modification of X, D ⊂ Y an effective
divisor such that

OY (−D) = I · OY (2.2.2)

for some I ideal of OX . Then µ∗(OY (−D)) = I.

Proof. By Equation (2.2.2) µ factors through the normalized blow-up of X along I,

B̃lI X → X, and the result follows from Proposition 2.2.2. □

Lemma 2.2.4. If I is a coherent ideal then the associated function satisfies

log|I| = log|I| (2.2.3)

on Xval.

Proof. Let k ∈ N such that I · Ik = I · Ik 5,

log|I|+ log|Ik| = log|I · Ik| = log|I · Ik| = log|I|+ log|Ik|
=⇒ log|I| = log|I|.

□

The converse also holds, the valuative criterion of integral closedness gives us that if
log|I| = log|J |, then I = J . Later, in Section 2.6, we will see a more general statement
that will imply it.

5See [Bou18, Remark 8.7]
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2.3. Divisorial and monomial valuations. The trivial character described before, will
be denoted vtriv on Xℶ, and called the trivial valuation:

vtriv(I) = 0, for every non-zero ideal I.

More interestingly, to each irreducible divisor F , of a normal analytic variety Y
µ→ X

bimeromorphic to X, we can associate a valuation on Y –and hence on X by Proposi-
tion 2.1.6– given by:

IY ∋ I 7→ ordF (I),

where ordF is given by the following procedure: choose any point q ∈ F , consider ordFq ∈
(Yq)

ℶ the order of vanishing along the germ of F at q, and denote by ordF ∈ Y val the
induced global valuation of Example 1.3.6:

ordF
.
= (ordFq)q.

It is classical that this construction does not depend on q ∈ F . More details will be given
in the discussion below on monomial valuations, see Proposition 2.3.4.

Equivalently, ordF (I) = k if and only if we can find a decomposition

I = OY (−kF ) · J
where F ⊈ ZJ , the zero set of J .

Definition 2.3.1. We denote by Xdiv the set of valuations of the form:

r · ordF : IX \ {0X} → Q,

for a rational number r ∈ Q≥0 and F a divisor as above.
We say that an element of Xdiv is a divisorial valuation. In particular, the trivial

valuation vtriv is a divisorial valuation.

Remark 2.3.2. Divisorial valuations are a birational invariant: if f : Y → X is a bimero-
morphic morphism, then fℶ maps divisorial valuations to divisorial valuations, moreover
the restriction

fℶ|Y div : Y div → Xdiv

is bijective.

The study of divisorial valuations will be of central importance for the following, as
they encode a lot of the geometry of X.

For an analytic curve, Xℶ can be completely described in terms of divisorial valuations,
as we can see in the next example:

Example 2.3.3. Let X be a smooth analytic curve, and v ∈ Xℶ a semivaluation on
X. The central variety of v, ZX(v), is an irreducible subvariety of X, therefore either
Z(v) = X or Z(v) = {p} a point on X. Let’s study the two options:

(1) If Z(v) = X then v = vtriv.
(2) If Z(v) = {p}, then

v = t · ordp
for t

.
= v(mp).

Indeed, v being centered at p implies, by Example 2.1.4, that v = wp for some
local semivaluation, w, centered at p. In addition, in dimension 1, the ring OX,p is
a discrete valuation ring and thus w = t·ordp. Hence we get v = (t·ordp)p = t·ordp.

Before further studying the divisorial valuations, we will study a slightly more general
class of examples of points on Xℶ, the so-called monomial valuations.
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2.3.1. Monomial valuations and cone complexes. Let (Y,B) be a snc pair over X, i.e. a
smooth bimeromorphic model of X together with B =

∑
i∈I Bi a reduced simple normal

crossing (snc) divisor. Define, for each subset J ⊆ I, the intersection BJ
.
=
⋂
j∈J Bj . The

connected components of each BJ are called the strata of B, and we usually denote a
stratum of B, by the letter Z.

We can associate to the pair (Y,B) a cone complex, ∆̂(Y,B), given by the following
rule: for each J ⊆ I , and each connected component, Z, of BJ , we associate σ̂Z ⊂ RI , a
cone identified with (R+)

J .
We give now a procedure for assigning to each point

w ∈ σ̂Z ⊆ ∆̂(Y,B)

a valuation on X:
Take any point p ∈ Z, and let’s suppose for convenience that J = {1, . . . , k}, we can

construct a monomial valuation on OX,p with respect to the germs B1, . . . , Bk at p and
weights w1, . . . , wk following [JM12]. This gives us a valuation valp(w) ∈ Val(OX,p) =

(Xp)
val. If we are given a coordinate open set z : U → Dn around p, such that in U the

divisor Bj is given by the local equation zj = 0, for j ∈ J , then the the valuation valp(w)
is given by:

valp(w)(f) = min
cα ̸=0
⟨α,w⟩,

for f ∈ OX,p, and f =
∑

α∈Nn cαz
α, in a possibly smaller open set. By some standard

algebraic machinery, like in [MN15, JM12], valp(w) does not depend on the coordinates
chosen, and only on the divisors. For an analytic proof see Appendix B.

Just like in Example 1.3.6, consider the valuation (valp(w))p ∈ Xℶ. We will now
argue that (valp(w))p does not depend on the point chosen p ∈ Z6, and therefore for

w ∈ σ̂Z ⊆ ∆̂(Y,B) we denote:

val(w)
.
= (valp(w))p. (2.3.1)

Proposition 2.3.4. For any w ∈ σ̂Z and p ∈ Z, the image in Xval of valp(w) ∈ (Xp)
val

is independent of the choice of p.

Proof. By connectedness of Z, it is enough to show that the statement holds locally near
a given p ∈ X.

Let z : U → Dn be a local coordinate chart around p such that:

• z(p) = 0;
• BJ ∩ U = Z ∩ U ;
• Bj ∩ U = (zj = 0), for every j ∈ J .

Let q ∈ z−1
(
D(13)

)
∩Z, and f ∈ OX(U), we’ll prove that valp(w)(f) = valq(w)(f). Before

going on, we introduce some notation that will be useful. Denote by z = (z1, z2) in such
a way that z1 ∈ Ck, and z2 ∈ Cn−k.

Using the coordinate system z to identify U and Dn, writing q = (q
1
, q

2
), we have that

q
1
= 0, and if

f(z) =
∑
α∈Nn

cαz
α

6Again, the analytic point of view of the monomial valuations explored in Appendix B, give us the
local independance of p, but for simplicity we will give here a more elementary approach.
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is the expansion of f at 0, then:

f(q + z′) =
∑

cα(q + z′)α

=
∑

cα1,α2 (q1 + z′1)
α1(q

2
+ z′2)

α2

=
∑

cα1,α2 z
′α1
1 (q

2
+ z′2)

α2

=
∑

cα1,α2 z
′α1
1

∑
j

(
α2

j

)
qj
2
z′
α2−j
2


=
∑∑

j

cα1,α2+j q
j
2

(
α2 + j

j

) z′α1
1 z′

α2
2 ,

denoting c′α1,α2

.
=
∑

j cα1,α2+j q
j
2

(
α2+j
j

)
, the exapansion of f around q becomes:

f(q + z′) =
∑

c′α1,α2
z′
α1

1 z′
α2
2 ,

hence we get: valq(w)(f) = minc′α1,α2
̸=0⟨w,α1⟩, and

valp(w)(f) = min
cα1,α2 ̸=0

⟨w,α1⟩

= min
{
⟨w,α1⟩

∣∣ ∀α1 ∈ Nk such that ∃α2 ∈ Nn−k with cα1,α2 ̸= 0
}
.
(2.3.2)

Now, if c′α1,β
̸= 0 for some α1 ∈ Nk and β ∈ Nn−k , there exists α2 ∈ Nn−k such that

cα1,α2 ̸= 0. By Equation (2.3.2) we thus get that valp(w)(f) ≤ valq(w)(f).
As long as q is sufficiently close to p, close enough to find a coordinate chart around q

that contains p with the property that the divisors B1, . . . , Bk are given by the equations
(z1 = 0), . . . , (zk = 0), we can exchange the role of p and q, and get the equality:

valp(w)(f) = valq(w)(f). (2.3.3)

Thus, if we let I be a coherent ideal, there exists an open set U containing p, and local
generators f1, . . . , fρ ∈ I(U) such that at any point q ∈ U , the germs (f1)q, . . . , (fρ)q
generate Iq. By Equation 2.3.3, this implies that:

valp(w)(Ip) = valq(w)(Iq),

for q ∈ U . Therefore, we have just proved that for every I coherent ideal (valp(w))p(I) is
locally independent of p, getting the desired result.

□

The above construction of monomial valuations gives us an embedding:

val : ∆̂(Y,B) ↪→ Xℶ.

In fact, if w ̸= w′ both lie on σ̂Z , then there exists an irreducible component of B, Z ⊆ Bi,
such that val(w) (Bi) ̸= val(w′) (Bi).

An element of the image of the above mapping is called a monomial valuation.

Remark 2.3.5. A monomial valuation associated to a rational point on ∆̂(Y,B) is a
divisorial valuation. As in the algebraic setting, this can be seen using weighted blowups.
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2.3.2. Back to divisorial valuations. As stated before, divisorial valuations will be of fun-
damental importance for our study of the geometry of X. As an example, one is able to
prove that Xdiv alone can tell homogeneous PL functions apart. To see that, one proves
that the homogeneous PL functions are essentially (Q-Cartier) b-divisors over X, and the
value on divisorial valuations will completely determine the associated b-divisor. This
idea will be further developed in Section 2.6, when we’ll prove that PL(Xℶ) is isomorphic
to a set of C∗-equivariant Q-Cartier b-divisors over X × P1.

Now we will focus our attention to obtain Theorem B.

Theorem 2.3.6 (Theorem B). Xdiv is dense in Xℶ.

Since PL(Xℶ) is dense in C0(Xℶ,R), PL(Xℶ) separates points from closed sets, and
hence to prove Theorem 2.3.6, it is enough to show that φ(Xdiv) = {0} =⇒ φ = 0, for
every φ ∈ PL

(
Xℶ).

Therefore we can restate Theorem 2.3.6, in the following way:

Statement. If φ ∈ PL(Xℶ) is such that

φ|Xdiv = 0

then φ = 0.

General idea of the proof of Theorem 2.3.6. In order to prove Theorem 2.3.6, it will be
useful to write a PL function as the evaluation function of some ideal.

Let’s assume that it is the case, and φ ∈ PL is attached to an ideal I, i.e. φ = log|I|,
then if log|I|(v) = 0 for every v ∈ Xdiv, and if I ̸= OX , it would be enough to take an

irreducible component of the exceptional divisor F ⊆ B̃lI X, and consider ordF ∈ Xdiv.
This would give us 0 = log|I|(ordF ) = − ordF (I) ̸= 0. □

Just like in the algebraic trivially valued case of [BJ22], this lead us to consider C∗-
equivariant models of X × P1, since we will be able to see PL+

(
Xℶ) as the evaluation

functions attached to C∗-equivariant ideals.

2.4. C∗-equivariant non-archimedean space. Recall that a is a flag ideal of X × P1

if it is C∗-equivariant coherent ideal of X × P1 whose support is contained in X × {0}.
Let F be the set of fractional flag ideals of X × P1, and consider the following subset

of (X × P1)ℶ:

(X × P1)ℶC∗
.
=

 v(a · b) = v(a) + v(b)
v : F → R v(a+ b) = min{v(a), v(b)}

v(t) = 1 & v(OX×P1) = 0

 (2.4.1)

together with a continuous map, σ, the Gauss extension map

σ : Xℶ → (X × P1)ℶC∗ ⊆ (X × P1)ℶ

where σ(v) : F → R, the Gauss extension of v, is given by

σ(v)(a) = σ(v)(
∑
λ∈Z

aλt
λ)

.
= min

λ
{v(aλ) + λ} ∈ R. (2.4.2)

Remark 2.4.1. As said before, we can see (X ×P1)ℶC∗ as a subset of (X ×P1)ℶ. Given

v ∈ (X × P1)ℶC∗, we can extend it to the set of all ideals IX×P1, by setting

v(I)
.
= lim

k→∞
v

(
(tk) +

∑
λ∈C∗

λ∗I

)
for I an ideal in X × P1.
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Lemma 2.4.2. The Gauss extension,

σ : Xℶ → (X × P1)ℶC∗ ,

is a bijection.

Proof. In fact, taking r : (X × P1)ℶC∗ → Xℶ to be the restriction map

r(v) : IX ∋ I 7→ v (I · OX×P1)

we get the inverse of σ. It is clear that, as defined, r(v) is a semivaluation on X. So we
are left to checking that for σ(r(v)) = v ∈ (X × P1)ℶC∗ , and r(σ(v)) = v ∈ Xℶ, which
follows from:

σ(r(v))(a) = min {r(v)(aλ) + λ}
= min {v (aλ · OX×P1) + λ}

= min
{
v
(
aλ · OX×P1 · (tλ)

)}
= v

(∑
λ

aλ · OX×P1 · (tλ)

)
,

= v(a)

and

r(σ(v))(I) = σ(v)(I · OX×P1)

= σ(v)

∑
λ≥0

I · tλ
 = min {v(I) + λ}

= v(I).

□

For simplicity sometimes we identify Xℶ and (X × P1)ℶC∗ .

The set of PL functions has a nicer description in (X × P1)ℶC∗ . If we denote

φa
.
= log|a| ◦ σ

we get the following result:

Proposition 2.4.3. The set {φa

∣∣ a ∈ F} Q-generates PL(Xℶ), the space of PL functions

of Xℶ. Moreover

PL+(X
ℶ) =

{
1

m
φa

∣∣ a ∈ F ,m ∈ Z} .
Proof. The proof follows form the description of flag ideals given in the equation (0.0.6).

□

As we remarked at the end of Section 2.3, this is a step in the right direction in order
to prove Theorem 2.3.6. But then two problems rise up:

(1) The argument at the end of section 2.3 gives us a C∗-equivariant divisorial valua-
tion vE ∈ (X × P1)ℶC∗ , but a priori we don’t know if vE comes from a divisorial

valuation over X, i.e. the restriction of vE , r(vE), lies in Xdiv. Hence, we don’t
get a contradiction.

(2) Even though the set PL+ generates the PL functions, it is not enough to check
that Theorem 2.3.6 is true for a PL+ function. What we need to check is that if
φ1(ordF ) = φ2(ordF ) for every ordF ∈ Xdiv then φ1 = φ2.

Section 2.5 will deal with the first problem, and Section 2.6 with the second one.
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2.5. C∗-equivariant divisorial valuations.

Definition 2.5.1 (Test configuration). We define a test configuration for X as the data
of

• a normal compact Kähler space X ;
• a C∗-action on X ;
• a C∗-equivariant flat morphism π : X → P1;
• a C∗-equivariant biholomorphism

X \ X0 ≃ X × (P1 \ {0}),
where X0

.
= π−1(0).

Moreover, if X , and X ′ are test configuration, X dominates X ′ if the bimeromorphic
map

X 99K X × P1 99K X ′

extends to a C∗-equivariant holomorphic map, which we say is a morphism of test con-
figurations. When X dominates X × P1, we say that X is dominating.

Remark 2.5.2. Test configurations of a given normal analytic variety X define a directed
system. By the equivariant version of Hironaka’s theorem, the set of test configurations
that are projective over X ×P1, and of snc central fiber, are cofinal in all test configura-
tions.

Unless otherwise stated, we will consider always such test configurations.

An important class of examples of test configuration are given by flag ideals:

Example 2.5.3. Let a be a flag ideal on X × P1, then

X .
= ˜Bla(X × P1)

is a test configuration of X that dominates X × P1.
For more examples see [DR17b, Example 2.11].

Definition 2.5.4 (C∗-invariant divisorial valuations). Let X be a test configuration of X
that dominates X ×P1, and X0 =

∑
bEE its decomposition into irreducible components.

We can associate to E an element, vE, of (X × P1)div ∩ (X × P1)ℶC∗ by the formula:

vE(a)
.
=

1

bE
ordE(a · OX ). (2.5.1)

We denote the set of such valuations, for all test configurations X , and all irreducible
E ⊆ X0 irreducible components of the central fibers, by (X × P1)divC∗ ⊆ (X × P1)ℶC∗.

Now, we focus our attention to (X × P1)divC∗ , and prove the following theorem:

Theorem 2.5.5. Let r : (X × P1)ℶ → Xℶ be the restriction map of Lemma 2.4.2, we
then have

r((X × P1)divC∗ ) = Xdiv.

This is known in the algebraic case, see [BHJ17, Theorem 4.6]. In that context, the
proof relies on some valuative machinery that we don’t have at our disposal here. More
specifically, when X is a proper algebraic variety over C, Xℶ corresponds to the the
Berkovich analytification, whose points are (semi)valuations on the field of functions of
(a subvariety of) X. Hence, we can associate to it invariants such as the rational rank,
and the transcendental degree, that characterize the divisorial valuations completely.

To prove Theorem 2.5.5 in our transcendental setting we will reduce to the algebraic
setting. In order to do that we use Proposition 2.5.10, which states that the order of
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vanishing along a smooth divisor can be computed locally. Hence it will be enough to
consider “germs” of manifolds and divisors, that is to consider at any p ∈ X, the scheme
Xp = SpecOX,p, and do local computations.

A useful tool in the following will be the following ‘GAGA’/base change theorem.

Theorem 2.5.6. Given X an analytic variety, and p ∈ X a point. There is an equivalence
between the category of projective OX,p–schemes, and that of analytic spaces which are
projective over the germ of X at p.

Sketch of correspondence. Let’s first build the functor on the objects.

Given a projective morphism Y
π−→ U , U ⊆ X an open set containing p, there exists an

embedding Y
j
↪−→ U × PNC such that

Y U × PNC

U

j

π

pr1

commutes. This means that we can find a finite number of homogeneous polynomi-
als f1, . . . , fk ∈ OX(V )[t1, . . . , tN+1] that cut-out Y |V

.
= π−1(V ), for some V open

neighborhood of p. Taking the germ of the coefficient of fi at p we get f1, . . . , fk ∈
OX,p[t1, . . . , tN+1], which defines a subvariety Yp of PNOX,p

∼= SpecOX,p ×SpecC P
N
C and

hence we get a projective morphism πp : Yp → SpecOX,p given by the diagram

Yp Xp ×SpecC P
N
C

Xp

πp

j

pr1

where j is the inclusion.
To analytify a projective morphism over SpecOX,p the strategy is the same, see [JM14].

It is clear how the correspondence of the objects induce a correspondence on the mor-
phisms. For more details see and [Bin76].

□

Apart from the usual correspondence of sheaves, one important property of this ‘GAGA’
theorem is the following dimension compatibility result:

Proposition 2.5.7. Let U ⊆ X be an open set, and let p ∈ U ⊆ X, Z a complex analytic
space that is projective over U , and q ∈ Z in the fiber of p. Then the dimension at q of
the germ of Z over p is equal to the dimension of Z.

Proof. See [Bin76, Theorem 2.8]. □

Given a projective morphism φ : Y → X we say the localization of φ at p is its isomor-
phism class on the category of the projective morphisms over the germ of X at p.

Birational Geometry intermezzo. Before proving Theorem 2.5.5, we recall some basic facts
of Birational Geometry.

Remark 2.5.8. Let v ∈ Xdiv be a divisorial valuation, and µ : X ′ → X a bimeromorphic
morphism such that Z

.
= ZX′(v) ⊆ X ′ is a (irreducible) divisor, then ordZ = v.
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Indeed, if F ⊆ Y
π→ X is chosen such that v = ordF , then it is enough to choose a

bimeromorphic model Y ′ that dominates Y and X ′, together with an irreducible divisor,
F ′ ⊆ Y ′, making the diagram,

Z ⊆ X ′ F ′ ⊆ Y ′

X F ⊆ Y,

µ

ν

ν′

π

(2.5.2)

commute, where F ′ .= ν−1(Z) is the strict transform of Z by ν. Then ordE = ordZ , and
ordE = ordF , in particular ordF = ordZ .

The next Lemma is a version of Zariski’s Lemma, found on [Art86, Appendix: Prime
Divisors, pg. 229], that will be important for the following.

Lemma 2.5.9. Let X be an integral scheme, and v a divisorial valuation of X, then after
blowing-up a finite number of times the center of v, c(v), the latter will be the generic
point of a divisor. □

For more details see [Art86].

Back at the discussion of Theorem 2.5.5. Let’s recollect the discussion on Section 2.3,
when F ⊆ X is a prime smooth divisor on X, and p a point in F , then the valuation
ordF ∈ Xdiv is given by the following procedure:

(1) Consider the valuation ordFp ∈ (Xp)
val given by the germ of F at p

(2) Then define

ordF (I)
.
= ordFq(Ip)

where Ip denotes the germ of I at p. We saw that this definition does not depend
on the point p ∈ F .

More generally:

Proposition 2.5.10. Let G ⊆ Y
µ−→ X be a (prime smooth) divisor, and µ a projective

bimeromorphic morphism, consider p ∈ ZX(ordG) = µ(G). Then, localizing at p we get a
(prime smooth) divisor

Gp ⊆ Yp
µp−→ Xp

and the associated divisorial valuation on Xℶ
p satisfies

ordG(I · OY ) = ordGp(Ip · OYp) (2.5.3)

for I a coherent ideal of X, and Ip the germ of I at p.

Proof. Let I be an ideal on X and k
.
= ordG(I), write:

I · OY = OY (−kG) · J,
with J an ideal such that G ⊈ ZJ . Localizing at p we get:

Ip · OYp = OYp(−kGp) · Jp.

By primality of G we have that Gp is prime and smooth, in particular Gp ⊈ ZJp . Getting

ordGp(Ip · OYp) = k.

□

In this C∗-equivariant setting we also have an analogue statement as of Remark 2.3.2,
that is of key importance for Theorem 2.5.5.
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Proposition 2.5.11. Let f : Y → X be a bimeromorphic morphism, then the morphism
F

.
= (f, id) : Y × P1 → X × P1 induces a bijection:

Fℶ|(Y×P1)div
C∗

: (Y × P1)divC∗ → (X × P1)divC∗ .

By Remark 2.3.2, Fℶ is a bijection between (Y × P1)div and (X × P1)div, but since
the valuations on (X × P1)divC∗ (or (Y × P1)divC∗ ) are attached to divisors corresponding
to ireducible components of C∗-equivariant degenerations of X (or Y resp.), we need to
check that, for vE ∈ (Y × P1)divC∗ , the divisorial valuation Fℶ(vE) can be obtained from
an irreducible component of the central fiber of a test configuration of X.

Proof of Proposition 2.5.11. Let’s start proving that Fℶ maps (Y ×P1)divC∗ to (X×P1)divC∗ .
If Y is a test configuration for Y , dominating Y × P1, and E ∈ VCar(Y) is a prime

smooth vertical divisor, then we’ll show that Fℶ(vE) ∈ (X × P1)divC∗ . That is, that there
exists a test configuration X for X, together with an irreducible divisor D ∈ VCar(X )
and a C∗-equivariant birational map µT : Y → X :

Y × P1 Y ⊇ E

X × P1 X ⊇ D,

(f, id)
µ1

µT

such that D and E generate the same divisorial valuation on X × P1.
To prove this we first observe that v

.
= Fℶ(vE) is a valuation on X × P1, and thus,

denoting X × P1 by X 1, the central variety Z1
.
= Z(v,X 1) is well defined and a C∗-

invariant irreducible set supported on the central fiber X × {0}, given by the zeroes of
(µ1)∗OY(−E). Therefore, the blow-up X 2 .

= BlZ1 X 1 is a test-configuration for X, and
the central variety, Z2, of v on X 2 is C∗-invariant, and supported on the central fiber.

Inductively, the blow-up bk+1 : X k+1 → X k of X k along Zk, is a test configuration and
the center, Zk+1, of v in X k+1 is C∗-invariant and supoorted on central fiber:

E ⊆ Y

Zk ⊆ X k X k+1 ⊇ Zk+1 = µk+1(E),

µk
µk+1

bk+1

where µk+1 is the bimeromorphic map defined by µk and bk+1.
In the algebraic case, by a Lemma of Zariski after blowing up the center of the divisorial

valuation a finite number of times we get that Z(v,X k) is a divisor. But in our non-
algebraic context, Zariski’s result does not a priori apply. The strategy of our proof will
be to localize at a point p ∈ Z1 ⊆ X × P1, use the version of Zariski’s lemma given in
Lemma 2.5.9, that applies in this local case, to get that, for some k ≫ 0 sufficiently big,
(Zk)p is a divisor. By Proposition 2.5.7 this implies that Zk is a divisor, and thus by
Remark 2.5.8 we are done.
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Taking p ∈ Z1 ⊆ X × P1, and localizing at p we get:

Ep ⊆ Yp

(Z1)p ⊆ (X 1)p (Z2)p ⊆ (X 2)p · · · (Zk)p ⊆ (X k)p.

(µ1)p

(b2)p

bp

(2.5.4)

The valuation vEp is a divisorial valuation on the OX,p-scheme (X i)p whose (scheme theo-

retic) center is the generic point of (Zi)p. Since (X i)p = Bl(Zi−1)p(X i−1)p, by Lemma 2.5.9
after a finite number of steps (Zk)p becomes a divisor. By irreducibility of Zk and Propo-

sition 2.5.7, Zk is a –global– divisor of X k.
The map Fℶ|(Y×P1)div

C∗
is injective by Proposition 2.1.6, and it is easy to see that it is

surjective. □

On to the proof of Theorem 2.5.5:

Proof of Theorem 2.5.5. Let’s start proving that Xdiv ⊆ r((X ×P1)divC∗ ), that is for every

F ⊆ Y µ→ X, irreducible smooth divisor on bimeromorphic a model of X,

ordF ∈ r((X × P1)divC∗ ).

Let Y be the deformation to the normal cone of F ⊆ Y , that is the blow-up of F×{0} in
Y ×P1, with exceptional divisor E ⊆ Y µ−→ Y ×P1, the irreducible divisor corresponding
to the blow-up of Y along F , cf. [Ful98, Chapter 5]. Localizing at p ∈ F :

Fp ⊆ Yp & Ep ⊆ Yp = BlFp×{0}(Yp ×SpecC P
1).

Now, applying Proposition 2.5.10 we get that for any ideal I:

ordF (I) = ordFp(Ip) = r(vEp)(Ip) = vEp

(
Ip · OYp

)
= vE(I · OY), (2.5.5)

where the second equality is given by [BHJ17, Theorem 4.8]7, and thus

ordF = r(vE) ∈ r(YC∗).

By Proposition 2.5.11 we have stablished that Xdiv ⊆ r((X × P1)divC∗ ).

To prove that Xdiv ⊇ r((X × P1)divC∗ ), the strategy will be the same.
Let X be a test configuration that dominates X × P1, and E ⊆ X0 an irreducible

component. We then have:

E ⊆ X E1 ⊆ Y1

X × P1

Z0 ⊆ X Y1
.
= BlZ0 X

f1

ρ1

b1

7The set up there is for a scheme of finite type over a field of characteristic zero, but the same arguments
apply.
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where Z0
.
= Z(r(vE), X) is the central variety of r(vE) on X, and Y1 is dominates Y1

and X , and f1 is a bimeromorphism such that the strict transform E1 = f−1
1 E is an

irreducible smooth divisor. We can define then Z1
.
= Z(r(vE), Y1) = ρ1(E1) ⊆ Y1.

Localizing at a point p ∈ Z0 we get:

Ep ⊆ Xp (E1)p ⊆ (Y1)p

(X × P1)p

(Z0)p ⊆ Xp (Z1)p ⊆ (Y1)p

f1,p

ρ1,p

b1,p

and, as before, Ep defines a divisorial valuation on Xp –again by the same arguments as
in [BHJ17, Theorem 4.8]– and its schematic center in Xp is the generic point of (Z0)p,
similarly the center of vEp on (Y1)p is the generic point (Z1)p. Repeating the construction
we get:

E ⊆ X E1 ⊆ Y1 · · · Eℓ ⊆ Yℓ · · ·

X × P1

Z0 ⊆ X Z1 ⊆ Y1 ·s Zℓ ⊆ BlZℓ−1
Yℓ−1 · · · ,

f1

ρ1

b1

(2.5.6)

and

Ep ⊆ Xp (E1)p ⊆ (Y1)p · · · (Eℓ)p ⊆ (Yℓ)p · · ·

(X × P1)p

(Z0)p ⊆ Xp (Z1)p ⊆ (Y1)p · · · (Zℓ)p ⊆ (Yℓ)p. · · · .

f1,p

ρ1,p

b1,p

(2.5.7)

Again by Lemma 2.5.9, it exists k ∈ N such that (Zk)p ⊆ (Yk)p = Bl(Zk−1)p(Yk−1)p is
a prime divisor. Proposition 2.5.7, together with the irreducibility of Zk, gives us that
Zk ⊆ Yk is a prime divisor. Moreover, by construction, Zk is the central variety of vE on
Yk, and therefore by Remark 2.5.8:

vEp = ord(Zk)p .

Thus

vE(I · OX ) = vEp(Ip · OXp) = ord(Zk)p(Ip · O(Yk)p) = ordZk
(I · OYk), (2.5.8)

getting

r(vE) = ordZk
∈ Xdiv.

This shows that r((X × P1)divC∗ ) ⊆ Xdiv, completing the proof.
□
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2.6. PL functions as divisors.

Definition 2.6.1. Let X be a test configuration of X, we denote by VCar(X ) the finite
dimensional Q-vector space given by the C∗-invariant Q-Cartier divisors supported on X0.
An element of VCar(X ) is called a vertical Q-Cartier divisor on X , or simply, vertical
divisor of X .

Now, since morphisms of test configurations induce linear mappings between the ver-
tical Q-Cartier divisors, we define vertical Cartier b-divisors.

Definition 2.6.2. Consider the direct system given by ⟨VCar(X ), µ∗X ,X ′⟩, we then say
that the elements of the directed limit:

lim−→
X

VCar(X ),

are called vertical Cartier b-divisors.

For each test configuration X we can define a natural map:

PL+(X
ℶ)→ VCar(X ),

that assigns to each φ ∈ PL+ the vertical divisor given by:∑
E

irred
⊆ X0

bE φ(vE)E. (2.6.1)

We show now that these maps glue well to define an universal one to the direct limit
lim−→X VCar(X ).

Lemma 2.6.3. The collection of the above mentioned maps induces the mapping:

PL+(Xℶ)→ lim−→
X

VCar(X ).

Proof. Let φ ∈ PL+(Xℶ), we show that for a cofinal set of test configurations, and
µ : X ′ → X a morphism of such test configurations:

µ∗

 ∑
E

irred
⊆ X0

bE φ(vE)E

 =
∑

E′
irred
⊆ X ′

0

bE′ φ(vE′)E′.

After scaling, we may assume that φ = φa for some flag ideal a. The set of test
configurations that dominate the normalized blow-up of X × P1 along a is cofinal, and
thus we will suppose that X is in this set. Let G be the effective divisor induced by a on
X :

OX (−G) = a · OX . (2.6.2)

Therefore, ∑
E⊆X0

bE φ(vE)E = −G.
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Writing X ′
0 =

∑
E′⊆X ′

0
bE′ E′ as the irreducible decomposition, it follows that:

µ∗

 ∑
E⊆X0

bE φ(vE)E

 = µ∗(−G) =
∑
E′⊆X ′

0

ordE′(O(µ∗G))E′

=
∑
E′⊆X ′

0

− ordE′(a · OX ′)E′

=
∑
E′⊆X ′

0

−bE′vE′(a)E′

=
∑
E′⊆X ′

0

bE′ φ(vE′)E′,

concluding the proof. □

Theorem 2.6.4. The above map induces an isomorphism

PL(Xℶ) ≃ lim−→
X

VCar(X ).

Proof. Since the map is additive, we have a unique linear extension:

PL(Xℶ)→ lim−→
X

VCar(X ).

We now construct its inverse.
Let X be a test configuration of X. By Remark 2.5.2 we can suppose that there exists a

morphism of test configurations µ : X → X×P1 that is projective, that is we can embbed
X :

X (X × P1)× Pℓ

X × P1 Pℓ
µ p1

p2

making the diagram commute, where pi is the i-th coordinate projection. Then the set:

AVCar(X ) .= {D ∈ VCar(X )| −D is µ-very ample}

is non-empty, since p∗2(mL)|X ∈ AVCar(X ), for L an ample line bundle on Pℓ and for
m≫ 0. Moreover, AVCar(X ) is a semigroup that Q-spans VCar(X ).

For each D ∈ AVCar(X ), −D is µ-globally generated, which means that there exists b,
a fractional ideal sheaf of OX×P1 , such that

OX (−D) = b · OX . (2.6.3)

Since D is a vertical divisor implies that we can suppose b ∈ F , and hence we define
φD

.
= −φb. To see that φD is well defined, is enough to observe that if

OX (−D) = b′ · OX (2.6.4)

then by Corollary 2.2.3 b = b′, which implies

φb = φb = φb′ = φb′

by Lemma 2.2.48.

8The proof of Lemma 2.2.4 applies, since for every flag ideal a the function log|a| is finite valued on
(X ×P1)ℶC∗ .
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Let us now check that φ : AVCar(X ) → PL(Xℶ) is additive. Pick D,D′ ∈ AVCar(X )
and write

OX (−D) = b · OX & OX (−D′) = c · OX ,

which implies

OX (−D −D′) = OX (−D) · OX (−D′) = (b · c) · OX

and thus

φD+D′ = −φb·c = −φb − φc = φD + φD′ .

Again we can extend φ uniquely to VCar(X ) by linearity.
Observe that this definition does not depend on X , in the sense that if µ : X ′ → X is

a morphism of test configurations, and D′ .= µ∗D ⊆ X ′, then we have

OX ′(−D′) = (b · OX ) · OX ′ = b · OX ′ . (2.6.5)

Hence φD′ = φD.
This defines 9 a linear map

lim−→
X

VCar(X )→ PL(Xℶ)

which is the inverse of (2.6.1). □

We thus can conclude the proof of Theorem 2.3.6.

Proof of Theorem 2.3.6. If φ ∈ PL(Xℶ) is such that

φ(v) = 0, for every v ∈ Xdiv.

Then, using Theorem 2.5.5 we have that for all test configurations X ′ and all prime
vertical divisors E′ ∈ VCar(X ′)

φ(vE′) = 0

in particular if D ∈ VCar(X ) is a vertical divisor, such that φD = φ, writing

D =
∑

E
irred
⊆ X0

φD(vE)E,

we will have D = 0, and thus φ = 0.
□

3. Dual complexes and log discrepancy

From this point on X will be a compact complex manifold.

3.1. Non-archimedean as a limit of tropical. In the algebraic setting it is known
that the Berkovich analytification corresponds to taking a limit of Tropical complexes,
known as the Dual Complex, associated to a test configurations. See [BJ22, Appendix A]
for a version in the trivially valued case. In this section we will show the analogous result
in our transcendental setting.

9The set of test configurations obtained by a sequence of blow-ups is cofinal.
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3.1.1. Contruction of the dual complex. Let X a smooth snc test configuration for X. Let
X0 =

∑
i biEi be the decomposition of the central fiber in it’s irreducible components.

Then (X ,X0,red) is a snc reduced birational model of Xtriv. Recall from Section 2.3.1

that we can then construct ∆̂X
.
= ∆̂(X ,X0,red).

Now, we will construct a simplicial complex, ∆X , as a sort of compact representative
of ∆̂X . For each “cone” face, σ̂Z ∼= (R+)

J , of ∆̂X we will associate a “simplex” face, σZ ,
of ∆X given by the equation

∑
biwi = 1, that is:

σZ
.
=

{
w ∈ σ̂Z ∼= (R+)

J
∣∣ ∑
i∈J

biwi = 1

}
.

Given a test configuration X , we have a natural map:

pX : Xℶ → ∆X (3.1.1)

defined by pX (v) = (v(Ei)) ∈ RJ+, where the latter that corresponds to the stratum Z,
the smallest one that contains Z(v,X ) the central variety of v on X .

3.1.2. Morphisms. Let X ,X ′ be test configurations of X, µ : X → X ′ a test configura-
tion morphism between them, and

∑
biEi,

∑
cjE

′
j be the decomposition in irreducible

components of X0,X ′
0 respectively, then clearly:

Supp(X0) ⊆ Supp(µ∗X ′
0).

In particular, we can write µ∗E′
j =

∑
i d
i
jEi, for Dj = (d1j , . . . , d

M
j ) ∈ RM , and we define

the map:

rX ,X ′ : ∆X −→ ∆X ′

(R+)
J ∼= σZ ∋ w 7→ rX ,X ′(w) ∈ σZ′ ∼= (R+)

J ′
w ,

for J ′
w
.
= {j ∈ I

∣∣ dij ̸= 0 for some i ∈ J}, given by:

rX ,X ′(w)
.
=
(∑

dij wi

)
j∈J ′

w

.

Since the snc test configurations form a directed poset we can take the projective limit,

∆
.
= lim←−

X snc

∆X ,

and the family of maps (pX )X induces an injective10 continuous map:

p : Xℶ → ∆.

Theorem 3.1.1. The map p : Xℶ → ∆ is a homeomorphism.

To get this, we’ll see that, just like Xℶ, ∆ has a PL structure, that will be isomorphic
to the PL structure on Xℶ.

3.1.3. PL Functions. There is a natural class of functions defined on ∆, the ind-type set
of piecewise linear functions. That is, the set of real valued functions that, on a complex
∆X , are Q-piecewise linear:

PL(∆)
.
=
⋃
X
(πX )

∗ PL(∆X ),

for πX : ∆→ ∆X the canonical projection.

10this is equivalent to PL(Xℶ) separating points on Xℶ
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After going to a higher model, we can assume that the functions are rationally affine
on each face of the associated dual complex ∆X , and hence we have:

PL(∆) = lim−→
X

AffQ(∆X ).

Now, observe that VCar(X )Q ∼= AffQ∆X , where the isomorphism is given by:

AffQ∆X ∋ f 7→
∑

bi f(ei)Ei. (3.1.2)

Taking the limit we get:

PL(∆) = lim−→
X

AffQ∆X ∼= lim−→
X

VCar(X ) ∼= PL(Xℶ). (3.1.3)

Lemma 3.1.2. The map

p : Xℶ → ∆

is an ismorphism of PL structures11.

Proof. We need to check that if η : PL(∆) → PL(Xℶ) is the ismorphism of Equa-
tion (3.1.3), then, for f ∈ PL(∆) and v ∈ Xℶ:

η(f)(v) = f (p(v)) . (3.1.4)

By Theorem 2.3.6 it is enough to check (3.1.4) for v ∈ Xdiv.
Now, given f ∈ PL(∆), and v ∈ Xdiv, let X be a smooth test configuration such that:

• the function f |∆X is rationally affine, for ∆X the associated dual complex;
• decomposing the central fiber X0

.
=
∑

i biEi, we have v = vE1 .

Then

f(p(v)) = f (v(E1), v(E2), . . . , v(Ek)) = v(E1)f(e1) = f(e1) = η(f)(vE1)

where the last equality is given by (3.1.2) together with (2.6.1). □

Now, we will prove that the isomorphism (3.1.3) induces a homeomorphism

Xℶ p∼= ∆.

To do that, as mentioned before, we will use an analogue of the Gelfand transform, to show
that Xℶ and ∆ can be seen as the “tropical spectra” of PL(Xℶ) and PL(∆) respectively.
Then, since the map

p : Xℶ → ∆

is an isomorphism of PL structures, p will be a homeomorphism.

3.1.4. Tropical Gelfand transform. Let’s recall some definitions from Section 1.2, and from
Appendix A.

Let A be a tropical algebra, that is a vector space together with a semi-ring operation,
which we will denote by {·, ·}, that makes (A, {·, ·},+) a semi-ring. The tropical spectrum
of A is the topological space given by12

TropSpecA = {φ ∈ A∗|φ ({f, g}) = max {φ (f) , φ(g)}} , (3.1.5)

where A∗ denotes the algebraic dual. We endow TropSpecA with pointwise convergence
topology.

11See Appendix A.
12cf. Lemma A.2.6
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Proposition 3.1.3. Let K be a compact Hausdorff topological space, and A ⊆ C0(K,R)
a dense linear subspace, containing all the constants, that is stable by max. Then A is
subtroipcal algebra of C0(K,R), and the map:

δ : K → (TropSpecA) , δx(f) = f(x),

induces the homeomorphism:

[δ] : K → (TropSpec(A) \ {0}) /R>0.

Proof. It is clear that A is tropical algebra with the max (or min as it also preserves
minima) and sum as operations.

Moreover, the map δ is clearly continous and injective, therefore it suffices to prove
that [δ] is surjective, since K is compact.

Let φ ∈ TropSpecA \ {0}, then

φ(|f |) = φ(max{f,−f}) = max{φ(f),−φ(f)} = |φ(f)| (3.1.6)

hence φ(1) > 0, thus we can suppose that φ(1) = 1, and

|φ(f)| = φ(|f |) ≤ max{φ(|f |), φ(∥f∥∞)}
= φ (max{|f |, ∥f∥∞}) = φ(∥f∥∞) = ∥f∥∞ · 1

Hence φ can be extended to a continuous linear functional on C0(K). That is, φ is a
signed measure on K. By (3.1.6), φ is actually a positive measure.

Let x ∈ suppφ, we will show that φ = δx. To do that we will just prove that ker δx =
kerφ, and the equality will follow since φ(1) = 1 = δx(1).

If f ∈ kerφ, then, by Equation (3.1.6), |f | ∈ kerφ. Since φ is a positive measure,
and |f | ≥ 0, we get f = 0 φ-almost everywhere. Therefore, since f is continuous, the
restriction:

f |suppφ = 0.

In particular, f(x) = 0, and thus f ∈ ker δx. Since codimkerφ = codimker δx, we
conclude. □

Proof of Theorem 3.1.1. The map

p : Xℶ → lim←−
X

∆X

induces the isomorphism:

η : lim−→
X

AffQ ∆X → PL(Xℶ),

and therefore we get a homeomorphism:

η∗ : TropSpec

(
lim−→
X

AffQ ∆X

)
→ TropSpec

(
PL(Xℶ)

)
,

given by η∗(δx)(f) = δx (η(f)) = η(f)(x) = f(p(x)) = δp(x)(f) which means that the map

Xℶ δ→ TropSpec
(
PL(Xℶ)

)
η∗→ TropSpec

(
lim−→
X

AffQ ∆X

)
δ−1

→ lim←−
X

∆X (3.1.7)

is given by x 7→ p(x). Hence, p is a homeomorphism. □

3.2. Log discrepancy on Xℶ.
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Log discrepancy over X. Let F ⊆ Y
π−→ X be an irreducible divisor, and v = r ordF for

some r ∈ Q+ We define the log discrepancy of v to be the quantity

AX(v)
.
= r ·

(
1 + ordF (KY/X)

)
. (3.2.1)

This gives us a function AX : Xdiv → Q, which will be called the log discrepancy over X.
If r = 1 we sometimes denote AX(F )

.
= AX(ordF ).

By some standard calculations, as in [Kol97, Section 3], the restriction of AX to (the

rational points of) each face of ∆̂(Y,B) ⊂ Xℶ is linear, and hence we can extend it to

∆̂(Y,B) by linearity.

Again by [Kol97, Section 3] if (Y ′, B′)
µ→ (Y,B) is a snc reduced birational projective

morphism over (Y,B), then the piecewise linear function induced by the pullback:

rµ : ∆̂(Y,B)→ ∆̂(Y ′, B′)

satisfies the inequality

AX ◦ rµ ≤ AX . (3.2.2)

Log discrepancy over X × P1. The same log discrepancy defined on the previous section
makes sense for X × P1. We study now the relationship between AX , and AX×P1 ◦ σ,
where σ is the Gauss extension.

Let F ⊆ Y
π−→ X be a prime divisor, and ordF the associated divisorial valuation.

Then, consider the divisors:

F × P1 ⊆ Y × P1 & Y × {0} ⊆ Y × P1

X × P1 X × P1.

A direct calculation gives us that σ(ordF ) is monomial with respect to F × P1 and
Y × {0}, with associated weights (1, 1). Therefore, using linearity of AX×P1 , we get:

AX×P1 (σ(ordF )) = AX×P1(F × P1) +AX×P1(Y × {0})
= AX(F ) + 1 = AX(ordF ) + 1.

(3.2.3)

Let X be a smooth test configuration. Like we did in Section 3.1.1, one can associate
C∗-equivariant monomial valuations on (X × P1)ℶC∗ to points w ∈ σZ ⊆ ∆X . Again, the

rational points on ∆X correspond to points in (X ×P1)divC∗ . By the same the reasoning as
before we get:

(1) Let w ∈ (σZ)Q ⊆ (∆X )Q, and val(w) the associated valuation satisfies:

AX×P1(val(w)) =
∑

wiAX×P1(Ei).

(2) For X ′ µ→ X a morphism of test configurations, we have

AX×P1 ◦ pX ≤ AX×P1

on (∆X ′)Q.

Therefore, by (1) we can extend by linearity AX×P1 to ∆X , and, by (2), define the limit:

AX×P1 : Xℶ → R ∪ {+∞} (3.2.4)

as the sup AX×P1(v)
.
= supX A (pX (v)).

The function on (3.2.4) will be called the log discrepancy, and from here on will be
denoted by A : Xℶ → R ∪ {+∞}.
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Remark 3.2.1. It is clear to see that from the definition of the log discrepancy, if X is
a test configuration, and pX is the function defined in Section 3.1, then A ◦ pX is a PL
function.

4. Non-archimedean plurisubharmonic functions

From now on, X will be a compact Kähler manifold, with a fixed Kähler class α ∈
Pos(X).

4.1. Plurisubharmonic PL functions. Let’s denote by Xtriv
.
= X × P1 the trivial

configuration, and by p1 : Xtriv → X the first projection. Given β ∈ H1,1(X), we then
denote

βXtriv

.
= p∗1β ∈ H1,1(X × P1)

More generally, given any test configuration that µ-dominates X × P1, we denote

βX
.
= µ∗βXtriv .

Remark 4.1.1. In [SD18, DR17b] the authors introduce, independently, the notion of co-
homological test configurations, which are generalizations –to the transcendental setting–
of the usual algebraic test configurations for a polarized manifold (X,L).

For them, a cohomological test configuration is a test configuration X together with a
C∗-invariant Bott–Chern cohomology class A ∈ H1,1

BC(X ) such that away from the central
fiber:

A|X ∗ = h∗αX ,

for h : X ∗ → X × (P1 \ {0}) the C∗-equivariant biholomorphism.
By [SD18, Proposition 3.10], the data of a cohomological test configuration is the same

of a test configuration together with the choice of a vertical divisor D, i.e.

A = αX +D (4.1.1)

for D ∈ VCarX .

Definition 4.1.2. Let φ ∈ PL(Xℶ) we say that φ is α-plurisubharmonic if given a
dominating test configuration X with D ∈ VCar(X ) such that φ = φD, we have

αX +D is nef relatively to P1. (4.1.2)

Since the pullback by an holomorphic map of a (1, 1)-class is nef if and only if the (1, 1)-
class itself is nef, this definition does not depend on X .

We will denote the set of α-psh functions by PL∩PSH(α). Moreover, we denote by
H(α) the set of functions φ ∈ PL(Xℶ) such that there exists a dominating test configura-
tion X and a vertical divisor D ∈ VCar(X ) satisfying:

φ = φD, αX +D is Kähler relatively to P1.

Remark 4.1.3. In the standard algebraic setting, the set of non-archimedean Fubini–
Study metrics is usually denoted by HNA. Here H(α) will play the role of this set in our
more general context. Note, however, that for an algebraic variety, H(α) it is not the set
Fubini–Study functions, the latter is only a subset: HNA ⊊ H(α).

Proposition 4.1.4. Let φ,ψ ∈ PL(Xℶ)∩PSH(α), and f : X → Y be a finite holomorphic
map, then the following properties hold:

(1) f∗φ ∈ PL∩PSH(f∗α);
(2) φ+ c, and t · φ lie in PL∩PSH(α) for c ∈ R and t ∈ Q;
(3) max{φ,ψ} ∈ PL∩PSH(α).
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While proof of items (1) and (2) is essentially the same as in the algebraic trivially
valued case, cf. [BJ22, Proposition 3.6], the proof of item (3) is different and relies on the
analysis of singularities of psh functions of Lemma 5.0.2.

Proof. Let X be a test configuration µ-dominating the trivial one, such that

φ = φD & ψ = φE

for some D,E ∈ VCar(X ).
For (1) it is enough to observe that the pull-back of a PL function is PL and that

pull-back of a nef class is nef.
For the first part of (2) it is enough to observe that:

• φ+ c = φD+cX0 ;
• On the quotient

H1,1(X )/µ∗(H1,1(P1))

we have [α+D] = [α+D + cX0], and hence

D + α+ cX0 ∈ Nef(X/P1) ⇐⇒ D + α ∈ Nef(X/P1).

If t ∈ N, then it is enough to observe that, like in the trivially valued case [BJ22,
Proposition 3.6],

φDt = t · φD
where Dt = µ∗tD is given by the base change

X t X

P1 P1.

µt

πt π

zt

(4.1.3)

The result follows from (1), the general case t ∈ Q follows from this one, since a cohomol-
ogy class is nef iff its pullback by a finite branched covering is.

For item (3), let’s suppose φ,ψ ∈ H(α), the general case will follow from an approxi-
mation argument, cf. Theorem 4.1.5 below.

Now, let c > 0 be large enough so that D′ .= −D+cX0 and E
′ .= −E+cX0 are effective,

we have:

max{φ−D′ , φ−E′} = max{φ,ψ} − c,
and thus it is α-psh iff max{φ,ψ} is α-psh.

Moreover, let X ′ be a test configuration ν-dominating X , such that

φG = max{φ−D′ , φ−E′}
for G ∈ VCar(X ′), then we observe that OX ′(−G) = ν∗[OX (D

′)+OX (E
′)], and the result

follows from Lemma 5.0.2. □

We will show that the set of α-psh functions is stable under decreasing limits.

Theorem 4.1.5. Let φ ∈ PL(Xℶ), and (φλ)λ∈Λ be a net of PL α-psh functions such that

φλ(v)→ φ(v), ∀ v ∈ Xdiv

then φ is PL α-psh function.

Proof. Let Xλ, and X be snc test configurations together with morphisms of test con-
figurations µλ : Xλ → X , and ν : X → X × P1, such that there exist vertical divisors
D ∈ VCar(X ), and Dλ ∈ VCar(Xλ) satisfying:

φ = φD, and φλ = φDλ
.
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To prove thatD+αX is nef relatively to P1 it is enough to show that for every irreducible
–hence smooth– component of the central fiber, E ⊆ X0, the restriction (D + αX )|E is in
Nef(E). This follows from the simple observation that for τ ̸= 0 we have:

D|Xτ
= 0 & (αX )|Xτ

= h∗τα ∈ Nef(Xτ ),
where ht : Xτ → X is the biholomorphism provided by the C∗-action.

Let then Y d ⊆ E be a d-dimensional subvariety of E, and γ ∈ Pos(X ) a Kähler class,
by Demailly-Paun numeric characterization of nefness, it sufices to show that:∫

Y
(D + αX ) ∧ γd−1 ≥ 0. (4.1.4)

To simplify notation, we rewrite the left hand side:∫
Y
(D + αX ) ∧ γd−1 = [Y ] · (D + αX ) · γd−1. (4.1.5)

We can suppose that Y is invariant by the C∗-action. Indeed, since E ⊆ X0 is irre-
ducible, it is itself invariant. Therefore, denoting Yτ

.
= τ · Y , we get by compacity of

each component of the space of effective cycles on E, cf. [HS74, Fuj78], that the limit
limτ→0 Yτ exists as an effective cycle

∑
aZZ, where the components Z are C∗-invariant.

Moreover, since C∗ acts trivially on cohomology, we observe that [Yτ ] = [Y ], and:

[Y ] · (D + αX ) · γd−1 = [Yτ ] · ρ(τ)∗(D + αX ) · ρ(τ)∗γd−1 →
∑

aZ [Z] · (D + αX ) · γd−1,

for ρ the C∗-action on X . Replacing Y for Z we get the C∗-invariance.
Let b : X ′ → X be the blow-up of X along Y . Since Y is C∗-invariant X ′ is a test

configuration. Let F ⊆ X ′ be the exceptional divisor, and consider the positive current,
of bi-dimension (d, d), given by:

T
.
= δF ∧ ωn−d,

where δF denotes the current of integrantion on F , and ω ∈ K(X ′) a Kähler form.
Consider now b∗(T ), by definition this is again a positive current of bi-dimension (d, d),

with support supp b∗(T ) ⊆ b(supp(T )) = b(F ) = Y . By Demailly’s support theorem every
current of bi-dimension (d, d) supported on an irreducible cycle of dimension d must be a
multiple of the current of integration over that cycle, which implies that the cohomology
classes [b∗(T )] = a[Y ], for a ≥ 0. Choosing η to be a Kähler form on X such that ω− b∗η
is positive on the fibers of b, we have:

b∗T · η = T · b∗η ≥
∫
F
(ω − b∗η)n−d ∧ (b∗η)d > 0,

thus [b∗T ] ̸= 0 =⇒ a > 0.
Hence, Equation (4.1.5) becomes:

1

a
[b∗(T )] · (D + αX ) · γd−1 =

1

a
[T ] · b∗(D + αX ) · b∗γd−1

=
1

a
[F ] · αn−d · (DX ′ + αX ′) · γd−1

X ′ ,

where the second equality holds by the projection formula, and DX ′
.
= b∗D.

Now, let X ′
λ be a test configuration that dominates both Xλ and X ′

Xλ X ′
λ

X X ′.

µλ νλ

bλ

b
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Denoting Fλ
.
= ν∗λF , and ωλ

.
= ν∗λω, we observe:

0 ≤ 1

a
[Fλ] · [ωλ]n−d · (DX ′

λ
+ αX ′

λ
) · γd−1

X ′
λ
,

since Fλ is effective, and Dλ+αXλ
, ω, and γ are nef –which implies that DX ′

λ
+αX ′

λ
, [ωλ],

and γX ′
λ
are nef as well.

Again by the projection formula, we have:

0 ≤ 1

a
[Fλ] · [ωλ]n−d · (DX ′

λ
+ αX ′

λ
) · (γX ′

λ
)d−1

=
1

a
[F ] · αn−d · [νλ∗DX ′

λ
+ αX ′ ] · γd−1

X ′ .

Now, since:

νλ∗DX ′
λ
=

∑
G

irred
⊆ X ′

0

bG φDλ
(vG)G −→

∑
G

irred
⊆ X ′

0

bG φD(vG)G = DX ′

it follows that:

1

a
[F ] · αn−d · [νλ∗DX ′

λ
+ αX ′ ] · γd−1

X ′ →
1

a
[F ] · αn−d · (DX ′ + αX ′) · γd−1

X ′ ≥ 0,

concluding the proof. □

4.2. PL Monge–Ampère operator and energy pairing. In this section we will give
the definition of the PL Monge–Ampère operator and, more genrally, the PL energy
pairing. We also state a few important properties and results.

The notions of pluripotential theory for Xℶ, introduced in this paper, are under the
synthetic formalism developed in [BJ23]. In particular, every result from Section 1 to 3
of Boucksom-Jonsson’s synthtetic approach holds in our case.

We will recall some of the results, for more details see [BJ22, Section 3.2] and [BJ23,
Section 1].

4.2.1. Monge–Ampère measure of a PL function. Let β ∈ H1,1(X) be a cohomology class
of positive volume, i.e. Vβ

.
=
∫
X β

n > 0, and φ ∈ PL(Xℶ) a PL function, we can associate

to the pair (β, φ) a signed measure on Xℶ, called Monge–Ampère measure, given by the
construction:

• Let X be a snc test configuration such that there exists a vertidcal divisor D ∈
VCar(X ) satisfying φD = φ.
• Denote X0 =

∑
bE E the decomposition in irreducible components of the central

fiber, and let cE be the constant given by

bE
Vβ

((βX +D)|E)n .

• Define the signed measure as:

MAβ(φ)
.
=

∑
E

irred
⊆ X0

cE δvE .

With the projection formula one checks that this definition does not depend on the
choice of test configuration. Moreover, if β ∈ Pos(X) is a positive class and φ ∈ H(β) the
above construction get us a probability measure.
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Definition 4.2.1. Let α ∈ Pos(X) be Kähler class, and P(Xℶ) the set of Radon proba-
bility measures on Xℶ. We call the operator:

H(α) ∋ φ MA7→ MAα(φ) ∈ P(Xℶ),

the Monge–Ampère operator. Whenever α is it clear by context we write MA(φ) for
MAα(φ).

Using the identification of Xℶ with the limit of dual complexes, we can observe that
if φ ∈ AffQ(∆X ), then p

∗
Xφ ∈ PL(∆) is such that MA(p∗Xφ) is supported on ∆X ⊆ Xℶ,

where pX is the retraction Xℶ → ∆X .

Remark 4.2.2. A borelian measure on a compact Hausdorff topological space K is com-
pletely determined by its values on a dense subset of C0(K), therefore the probability
measure MA(φ) is completely determined by its values on the set PL(Xℶ). We will use
this approach to generalize the Monge–Ampère measure (see Remark 4.4.8), and construct
the mixed Monge–Ampère energy (see next section).

4.2.2. Energy pairing for PL functions. Let φ0, . . . , φn ∈ PLR, and β0, . . . , βn ∈ H1,1(X).

Definition 4.2.3. Let X be a test configuration dominating X×P1, such that there exist
D0, . . . , Dn ∈ VCar(X ), with the property that for every i = 0, . . . , n we have

φi = φDi

then we define the energy pairing

(β0, φ0) · (β1, φ1) · · · (βn, φn)
.
= (β0,X +D0) · · · (βn,X +Dn) ∈ R, (4.2.1)

where, in the right hand side of the inequality, the intersection product is against the
fundamental class of X . As before, the projection formula guarantees that the energy
pairing is well defined.

We also refer to the energy pairing as the energy coupling, or as mixed Monge–Ampère
energy, see item (iv) of Proposition 4.2.4 below.

Clearly the pairing is a symmetric multi-linear form, which further satisfies the following
properties:x

Proposition 4.2.4. Let φ0, . . . , φn ∈ PLR, and X a test configuration such that there
exist D0, . . . , Dn ∈ VCarR(X ) with

φi = φDi ,

and let β0, . . . , βn ∈ H1,1(X), t ∈ Q>0, and α ∈ Pos(X) then we have:

(i) (0, 1) · (β1, φ1) · · · (βn, φn) = β1 · · ·βn
(ii) (β0, 0) · · · (βn, 0) = 0
(iii) (β0, t · φ0) · · · (βn, t · φn) = t(β0, φ0) · · · (βn, φn)
(iv) For ψ ∈ PLR, and Vα

.
= [X] · αn, we have

1

Vα
(0, ψ) · (α,φ0)

n =

∫
Xℶ

ψMAα(φ0)

(v) More generally, for ψ ∈ PLR we have

(0, ψ) · (β1, φ1) · · · (βn, φn) =
∑
E⊆X0

bE ψ(vE)(β1 +D1)|E · · · (βn +Dn)|E

for E irreducible component and bE = vE(X0).
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Proof. (i) Follows from the remark that, as cohomology classes, [X0] = [X1]. Indeed, both
of them can be written as π∗([0]) and π∗([1]) respectively, where [0] and [1] represent the
cohomology classes of 0, 1 ∈ P1 in H2(P1,C) ∼= C, but since [0] = [1], the result follows
from the flatness of π : X → P1.

(ii) Observe that:

[X0] · β0,X · · · · βn,X = [X] · β0 · · · · · ·βn = 0.

(iii) It is enough to check that for each d ∈ Z>0 we have (β0, d · φ0) · · · (βn, d · φn) =
d(β0, φ0) · · · (βn, φn), but then again d · φD = φDd

, where Dd is the pullback of D under
the normalized base change:

Ed ⊆ X̃d

Xd E ⊆ X

P1 P1,td

(4.2.2)

in addition if α0, . . . , αn+1 ∈ H1,1(X ), then (α0)Xd
· · · (αn+1)Xd

= dα0 · · ·αn+1 and the
result follows.

(iv) Follows from (v).
(v) Let X ′ be a test configuration µ-dominating X such that there existsG ∈ VCarR(X ′)

with

ψ = φG,

then we have:

(0, ψ) · (β1, φ1) · · · (βn, φn) = G ·
(
β1,X ′ + µ∗D1

)
· · ·
(
βn,X ′ + µ∗Dn

)
= µ∗G · (β1,X +D1) · · · (βn,X +Dn)

=
∑
E⊆X0

ordE(G)E · (β1 +D1) · · · (βn +Dn)

=
∑
E⊆X0

bE φG(vE)(β1 +D1)|E · · · (βn +Dn)|E

=
∑
E⊆X0

bE ψ(vE)(β1 +D1)|E · · · (βn +Dn)|E ,

(4.2.3)

where the second equality is given by the projection formula. □

Corollary 4.2.5. Let β1, . . . βn ∈ Pos(X) and for each i a βi-psh function φi ∈ PL∩PSH(βi).
If γ ∈ H1,1(X), and ψ,ψ′ ∈ PL are such that ψ ≤ ψ′, then

(γ, ψ) · (β1, φ1) · · · (βn, φn) ≤ (γ, ψ′) · (β1, φ1) · · · (βn, φn)

Proof. Follows directly from equation 4.2.3. □

Lemma 4.2.6 (Zariski’s Lemma). Let ψ be a PL function, and, for i = 2, . . . , n, let
φi ∈ PL∩PSH(βi). Then

(0, ψ)2 · (β2, φ2) · · · (βn, φn) ≤ 0. (4.2.4)

Proof. Let X be a test configuration that dominates X × P1 with D,D2, . . . , Dn ∈
VCar(X ) such that ψ = φD and φi = φDi .
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The energy pairing induces a bilinear form on the finite dimension vector space VCarR(X )
as the map:

(G1, G2) 7→ (0, φG1) · (0, φG2) · (β2, φ2) · · · (βn, φn).
Therefore, we must prove that this bilinear form is negative semidefinite.

The strategy will be to apply Lemma C.0.1. Let (Ei) be the irreducible components of
X0, and note that they form a basis of VCar. Then:

(1) For every i, j, (Ei, Ej) = Ei · Ej · (β2 + D2) · · · (βn + Dn) is non-negative, since
βK +Dk is nef, for k = 2, . . . n.

(2) Consider X0 as an element of VCar(X ), then (X0, Ei) = X0 ·Ei ·(β2+D2) · · · (βn+
Dn) = 0, since every component is supported on X0.

Therefore, the bilinear form is negative semi-definite, and the result follows. □

This version of the Zariski Lemma that we have just proved is what allow us to use all
the synthetic pluripotential theory of [BJ23], that will provide us with important a priori
estimates for the mixed energy. For more details see Appendix D.

Now we will recall some notions from –the above mentioned– synthetic pluripotential
theory restricting it to our case.

Recall of some synthetic facts of Boucksom–Jonsson. If we let φk ∈ PL∩PSH(βk) for
k = 1, . . . , n− 1, and denote the symbol (β1, φ1) · · · (βn−1, φn−1) by Γ, we can associate a
semi-norm:

∥ψ∥Γ
.
=
√
−(0, ψ)2 · Γ,

for ψ ∈ PLR.

Remark 4.2.7. Since the (positive semi-definite) quadratic form −(0, ψ)2 ·Γ comes from
a bilinear form we have an associated Cauchy-Schwarz inequality:

|(0, ψ1) · (0, ψ2) · Γ| ≤ ∥ψ1∥Γ∥ψ2∥Γ,
that is the base of the synthetic estimates of [BJ23].

Definition 4.2.8. Let φ,ψ ∈ PL∩PSH(α), and denote:

Jα(φ,ψ)
.
=

1

Vα

n∑
j=1

j

n+ 1
∥φ− ψ∥(α,φ)j−1·(α,ψ)n−j ; (4.2.5)

Iα(φ,ψ)
.
=

1

Vα

n∑
j=1

∥φ− ψ∥(α,φ)j−1·(α,ψ)n−j . (4.2.6)

Theorem 1.33 of [BJ23] gives that these functionals define equivalent quasi-metrics.
We also recall the following defintion:

Definition 4.2.9. We define the Monge–Ampère energy as the functional Eα : PL(Xℶ)→
R given by the expression:

PL ∋ φ 7→ 1

(n+ 1)Vα
(α,φ)n+1.

If φ,ψ ∈ PL(Xℶ), the variation of Eα is given by:

d

dt
Eα (tψ + (1− t)φ) |t=0 =

d

dt

1

(n+ 1)Vα
(α, tψ + (1− t)φ)n+1|t=0

=
1

Vω
(α,φ)n · (0, ψ − φ)

=

∫
Xℶ

(ψ − φ)MAα(φ),

(4.2.7)
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justifying its name.
The energy Eα restricts to a concave functional on PL∩PSH(α), and thus for φ,ψ ∈

PL∩PSH(α) we get that:

Eα(ψ) ≤ Eα(φ) +

∫
Xℶ

(ψ − φ)MAα(φ), (4.2.8)

and the difference

Eα(φ)− Eα(ψ) +

∫
Xℶ

(ψ − φ)MAα(φ)

coincides with Jα(φ,ψ).

4.3. Non-archimedean psh functions. We wil now define one of the most important
objects of study of this paper the non-archimedean psh functions.

Definition 4.3.1. A function

ψ : Xℶ → [−∞,+∞[

is α-psh if ψ ̸≡ −∞, and there exists a decreasing net (φλ)λ∈Λ ∈ PL∩PSH(α) such that

φλ(v)↘ ψ(v), for every v ∈ Xℶ. (4.3.1)

The set of all α-psh functions will be denoted PSH(α).

Like for the PL functions we have the following properties: for φ,ψ ∈ PSH(α), and
f : X → Y a finite holomorphic map:

(1) f∗φ ∈ PSH(f∗α),
(2) φ+ c, and t · φ are α-psh for c ∈ R and t ∈ Q,
(3) max{φ,ψ} ∈ PSH(α).

The next result is well known in the algebraic case, see for instance [BJ22, Corol-
lary 4.17] or [BFJ16], and the proof in our transcendental setting goes without a change.
We follow the proof of [BFJ16, Section 6.1], which is added here for completeness.

Theorem 4.3.2. If ψ ∈ PSH(α), then

ψ|Xdiv > −∞.

Proof. Let v be a divisorial valuation, and X be a test configuration such that, decom-
posing the central fiber in irreducible components

X0 =
k∑
j=0

bj Ej ,

we have v = vE0 .
Consider now, γ ∈ Pos(X ), and (φλ)λ ∈ PL∩PSH(α) such that:

φλ(v)↘ ψ(v), for every v ∈ Xℶ.

We may assume supψ = 0, and hence that supφλ = 0 = max{φλ(vEj )}.
If Xλ is a test configuration that µλ-dominates X , with Dλ ∈ VCar(Xλ) such that

φλ = φDλ
, then, since (µλ)

∗Ej is an effective divisor, and the classes

αXλ
+Dλ, (µλ)

∗γ are relatively nef w.r.t. P1,

we have:

0 ≤ (µλ)
∗Ej · (αXi +Dλ) · (µλ)∗γn−1 = Ej · (αX + (µλ)∗Dλ) · γn−1, (4.3.2)

where the equality is given by the projection formula.
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Since (µλ)∗Dλ =
∑

k bk φDλ
(vEk

)Ek, rewriting the inequality (4.3.2), it follows:∑
k

bk φDλ
(vEk

) (Ej · Ek · γn−1) ≥ −Ej · αX · γn−1.

Now, if Ej ∩ Ek ̸=, then Ej · Ek · γn−1 > 0, and thus for all j:

bj(Ej · Ej · γn−1) = Ej · (bjEj −X0) · γn−1

= −
∑
k ̸=j

bk(Ej · Ek · γn−1) ≤ −1

where the first equality comes from flatness of π : X → P1, and the last inequality comes
from X0 being connected with at least two irreducible components. Exactly like [BFJ16,
Section 6.1], we get:

|φDλ
(vEj )| ≤ C(X , α, γ), (4.3.3)

for some constant C depending only on X , α and γ. Hence:

C ≥ lim
i
|φDλ

(vEj )| = |ψ(vEj )|,

concluding the proof. □

Thanks to the above result, a natural topology to endow PSH(α) will be the topology
of pointwise convergence on divisorial valuations.

Bellow, we will also prove that:

φ ≤ ψ on Xdiv =⇒ φ ≤ ψ on Xℶ

for φ ∈ PSH(α) and ψ : Xℶ → [−∞,+∞[ a usc function. To get this result we need the
following description of divisorial valuations:

Definition 4.3.3. Let a ∈ F be a flag ideal, the set Σa ⊆ (X × P1)divC∗ = σ(Xdiv) of
divisorial valuations given by the irreducible components of the exceptional divisor of the

normalized blow-up ˜BlaX × P1 are called the Rees valuations associated to a.

It is clear from definition that:

(1) Σa = Σa

(2) Σam = Σa

(3)
⋃

a∈IX
Σa = (X × P1)divC∗

The next result is a generalization of [BJ22, Lemma 2.13], and the proof follows the
same general lines.

Lemma 4.3.4. Let a, b ∈ F , and m ∈ N, then

sup
Xℶ

{
1

m
φb − φa

}
= max

Σa

{
1

m
φb − φa

}
Proof. After replacing a for am, we can suppose that m = 1. Set

C
.
= max

Σb

{φa − φb} (4.3.4)

Let X = ˜BlaX × P1, and let X0 =
∑
biEi be the decomposition into irreducible

components of the central fiber, so that Σa = {vE1 , . . . , vEk
}. Then, we observe that:

(1) The ideal a becomes invertible on X .
(2) We can then “subtract”, and Equation 4.3.4 reads

ordEi (b · OX (D)) ≥ 0, for every i = 1, . . . , k (4.3.5)

for some divisor D ∈ VCar(X ).
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(3) The polar variety of b · OX (D) is contained in the central fiber X0, hence Equa-
tion 4.3.5 implies that the polar variety is of codimension at least 2.

(4) Since X is normal, b · OX (D) ⊆ OX hence proving the result.

□

As a consequence of the previous lemma, like in [BJ22, Lemma 4.26], we conclude that:

Proposition 4.3.5. Let ψ ∈ PL(Xℶ), then there exists a finite subset Σ(ψ) = Σ ⊆ Xdiv

such that for every φ ∈ PSH(α) we have:

sup
Xℶ

(φ− ψ) = max
Σ

(φ− ψ).

□

Corollary 4.3.6. Let ψ ∈ C0
(
Xℶ,R

)
, then the function

PSH(α)→ R, φ 7→ sup
Xℶ

(φ− ψ)

is continuous.

Proof. Follows from the previous lemma, together with the density of PL(Xℶ) in C0(Xℶ).
□

Theorem 4.3.7. Let φ ∈ PSH(α), and ψ : Xℶ → R ∪ {−∞} a usc function, we then
have:

φ ≤ ψ on Xdiv ⇐⇒ φ ≤ ψ on Xℶ.

Proof. If ψ ∈ PL this is an easy consequence of Proposition 4.3.5.
Since every continuous function is a uniform limit of PL functions, the same result

holds if ψ ∈ C0(Xℶ).
Lastly, if ψ is a decreasing limit of the net (ψλ)λ ∈ C0(Xℶ), we have that φ ≤ ψ ≤ ψλ

on Xdiv, and hence by the previous case φ ≤ ψλ, and finally this implies that φ ≤ ψ. □

Remark 4.3.8. Darvas, Xia, and Zhang developed on [DXZ23] a notion of transcendental
non-archimedean psh metrics. They use the formalism of Ross–Witt Nystrum of test
curves on the complex manifold X, and call a non-archimedean psh metric, a maximal
test curve.

Their approach is more general to define non-archimedean β-psh metrics for a tran-
scendetal big class β. Bellow, in Section 5.2, we compare the present approach with theirs.
As we will see they coincide when β is Kähler, and the metric is of finite energy.

4.4. Extending the energy pairing. In this section we will extend the energy pairing
to general psh functions. Unlike section 4.2, the synthetic approach of Boucksom-Jonsson
does not cover this singular case, even though similar generalizations can be done.

Here we will follow closely Section 7 of [BJ22].
Let α0, . . . , αn ∈ Pos(X), and φi ∈ PSH(αi) for i = 0, . . . , n, we define:

(α0, φ0) · · · (αn, φn)
.
= inf {(α0, ψ0) · · · (αn, ψn) : ψi ∈ H(αi), ψi ≥ φi} . (4.4.1)

Lemma 4.4.1. The energy pairing,
n∏
i=0

PSH(αi)→ R ∪ {−∞}

(φ0, . . . , φn) 7→ (α0, φ0) · · · (αn, φn),

is upper semi-continuous.
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It is clear that the energy pairing is increasing in each variable. Hence, together with
the previous lemma, we conclude that the energy pairing is continuous along decreasing
nets.

Proof of Lemma 4.4.1. The proof follows from Corollary 4.3.6. For more details see [BJ22,
Theorem 7.1].

□

Just like in the algebraic setting, Corollary 7.11 of [BJ22], we have the following result:

Proposition 4.4.2. Let α0, . . . , αn ∈ Pos(X), and for i = 0, . . . , n φi ∈ PSH(αi), with
φi ≤ 0, then

(α0, φ0) · · · (αn, φn) ≳ tn
2
min
i

{
(αi, φi)

n+1
}

(4.4.2)

for t ∈ R sufficiently large in order to satisfy αi ≤ tαj for every i, j ∈ {0, . . . , n}.

Proof. Theorem 1.18 of [BJ23] gives the inequality for φi ∈ PL∩PSH(αi), by taking
decreasing sequences we conclude. □

We now extend the Monge–Ampère energy functional to the class of α-psh functions.

Definition 4.4.3. Let α ∈ Pos(X), and Vα =
∫
X α

n, we define the Monge–Ampère
energy functional to be

Eα : PSH(α)→ R ∪ {−∞}

φ 7→ V −1
α

n+ 1
(α,φ)n+1

we define the set of finite energy non-archimedean potentials to be the set

E1(α) .= {φ ∈ PSH(α) : Eα(φ) > −∞}
when is clear by context we may ommit α.

Moreover,

E1abs
.
=

⋃
α∈Pos(X)

E1(α)

As a direct consequence of Proposition 4.4.2, we have:

Proposition 4.4.4. Let α0, . . . , αn ∈ Pos(X), and φi ∈ E1(αi), then
(α0, φ0) · · · (αn, φn) ∈ R (4.4.3)

is finite. □

Remark 4.4.5. This allow us to extend the Jα and the Iα functionals, defined in Sec-
tion 4.2, to E1(α) by the formulas of Equations (4.2.5) and (4.2.6) respectively.

Moreover, the quasi-triangular inequality, and quasi-symmetry of Jα for PL∩PSH(α)
functions, pass through, taking decreasing limits, to E1(α).

We can also see that the pairing of Proposition 4.4.4 is additive on the forms, and hence
can be extended by linearity to H1,1(X).

Indeed, fix α1, . . . , αn ∈ Pos(X) and φi ∈ E1(αi), for i = 1, . . . , n, finally denote
Γ
.
= (α1, φ1) · · · (αn, φn), we then define:

Definition 4.4.6. Let β ∈ H1,1(X), φ ∈ E1abs, and α0, α̃0 ∈ Pos(X), such that

β = α0 − α̃0

We define the energy pairing (β, φ) · (α1, φ1) · · · (αn, φn) by the formula:

(β, φ) · (α1, φ1) · · · (αn, φn)
.
= (α0 + α,φ) · Γ− (α̃0 + α, 0) · Γ (4.4.4)
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where φ ∈ E1(α) ⊆ E1(α+ α0) ⊆ E1abs, for some α ∈ Pos(X).
Similarly, we get the energy pairing defined on

∏n
k=0

(
H1,1(X)× E1abs

)
.

In particular, we define another functional whose importance will become apparent in
Section 6, which will be a twisted version of the Monge–Ampère energy.

Definition 4.4.7. Let α ∈ Pos(X), Vα =
∫
X α

n, and β ∈ H1,1(X), we define the Monge–
Ampère twisted energy to be the functional

Eβα : E1(α)→ R

φ 7→ V −1
α (0, β) · (α,φ)n.

Remark 4.4.8. We can also extend the Monge–Ampère operator to the set E1(α). We
associate to φ ∈ E1(α) the probability measure MAα(φ) satisfying:

PL(Xℶ) ∋ ψ 7→
∫
Xℶ

ψMAα(φ)
.
=

1

Vα
(0, ψ) · (α,φ)n.

5. From Complex to Non-Archimedean Geometry

In this section X will be a compact Kähler manifold, and we will fix a Kähler metric
ω ∈ K(X), and α ∈ H1,1(X) its cohomology class. We also will only consider smooth test
configurations dominating X × P1, with snc central fiber.

Basic Kähler Geometry tools. Let I be a coherent ideal of X, and β ∈ H1,1(X), we
say that I ⊗β is nef, if −F +β is nef, for F ⊆ Y a log resolution of I, and F the effective
divisor induced by I.

Proposition 5.0.1. Let I be an ideal such that there exists U : X → R ∪ {−∞} a ω-psh
function with of singularity type I, then α⊗ I is nef.

Proof. Let µ : Y → X be a log resolution of I, and F ⊆ Y the effective divisor induced
by I. We have, by Siu’s decomposition theorem, that:

0 ≤ µ∗ω + ddc(U ◦ µ) = δF + T (5.0.1)

for T a positive current of bounded potential, that is,

T = −ηF + µ∗ω + ddcψ

for ψ ∈ L∞, and ηF a smooth representative of c1(O(F )). Hence
ψ ∈ PSH(−ηF + µ∗ω) ∩ L∞.

By a classical result due to Demailly [−ηF + µ∗ω] is nef. □

Lemma 5.0.2. Let D,E ⊆ X effective irreducible divisors and β ∈ H1,1(X), such
that β − D and β − E admit a smooth representative which is semi-positive. Then
β ⊗ {O(−D) +O(−E)} is nef.

Proof. Let hD (hE resp.) be a smooth metric on OX(D) (OX(E) resp.) such that the
associated curvature θD (θE resp.) is a smooth form with η − θD (η − θE resp.) semi-
positive, for η a smooth representative of β.

Let sD be the canonic section of OX(D), and sE of OX(E), then ψD
.
= log|sD|hd and

ψE
.
= log|sE |hE are such that:

ddcψD + θD = [D] ≥ 0, and ddcψE + θE = [E] ≥ 0,

and thus θD (θE resp.)-psh functions.
Now, since η − θD (η − θE resp.) is semi-positive, both ψD and ψE are η-psh. In

particular, ψ
.
= max{ψD, ψE} is η-psh, and has the singularity type of O(−D) +O(−E),

which by Proposition 5.0.1 implies that β ⊗ {O(−D) +O(−E)} is nef. □
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5.1. Geodesic rays and non-archimedean psh functions. The goal of this section is
to get the analogues of Theorem 6.2 and Theorem 6.6 from [BBJ21] in our transcendental
setting. These results are essential for the non-archimedean approach for the YTD con-
jecture developed by Berman–Boucksom–Jonsson, of which [Li22] and the present paper
rely on.

Remember that we have fixed a Kähler form ω ∈ K(X), and its cohomology class
α = [ω].

5.1.1. Quick recall on geodesic rays. In this section we will use the conventions of [BBJ21].
We define a psh ray as a map U : R≥0 → PSH(ω) such that the associated S1-invariant

function,

U : X ×D∗ → [−∞,+∞[ , U(x, τ)
.
= U− log|τ |, (5.1.1)

is p∗1ω-psh.
Whenever a psh ray has image in E1(ω) and t 7→ Eω(Ut) is affine, we say that U is a

psh geodesic ray.
Moreover, a psh ray U has linear growth, if there exist C,D > 0 such that:

Ut ≤ C t+D.

Every psh geodesic has linear growth, cf. [BBJ21, Proposition 4.1].

Remark 5.1.1. Darvas proves in [Dar17, Theorem 2] that psh geodesic rays are –a dis-
tinguished class of– actual geodesic rays for the Darvas metric d1, and in [Dar15] that for
U0 and U1 finite energy potentials, there always exists a psh geodesic joining them.

We will study now the relationship between –archimedean– rays of functions on X,
with non-archimedean functions on Xℶ.

Definition 5.1.2. A S1-invariant function, U : X × D∗ → R ∪ {−∞}, is C∞ (resp.
L∞)-compatible with D ∈ VCar(X ), for X a µ-dominating test configuration, if:

U ◦ µ+ log|fD| locally extends to a smooth (resp. bounded) function (across X0),

for fD a local equation of D.

Furthermore, if U is a compatible (either smoothly, or boundedly) with the vertical
divisor D we write:

Uℶ .
= φD. (5.1.2)

Using this new terminology, we adapt Proposition 5.0.1 to this language.

Lemma 5.1.3. Let U be a ω-psh ray L∞-compatible with a vertical divisor D ∈ VCar(X ),
then Uℶ = φD is α-psh.

Proof. We first observe that we can suppose D effective, otherwise consider

φD+cX0 = φD + c

for c≫ 0, that is α-psh iff φD is. Let µ : X → X×P1 be a morphism of test configurations,
then by Siu’s decomposition formula we have:

0 ≤ ωX + ddc(U ◦ µ) = −δD + T,

for T a positive current of bounded potential, that is

0 ≤ T = ηD + ωX + ddcψ

with ψ ∈ L∞, and η a smooth representative of c1(OX (D)).
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Consider the irreducible decomposition X0 =
∑
bkEk, since T is of bounded potential,

we can restrict T to a bounded positive current supported on Ek:

0 ≤ T |Ek

And hence by a result of Demailly we have:

[T |Ek
] = [T ]|Ek

= (D + [ωX ])|Ek
is nef.

Therefore Uℶ is α-psh. □

More generally, for any U : R≥0 → PSH(ω) psh ray of linear growth there is an induced
“non-archimedean” map:

UNA : Xdiv → R

given by the following procedure:

(1) Let E ⊆ X µ−→ X × P1 be a prime vertical divisor.
(2) Consider the function V

.
= U ◦ µ : µ−1(X ×D∗)→ [−∞,+∞[, where U is like in

Equation 5.1.1.
(3) Define

UNA(vE)
.
= −ν(V,E)

where ν denotes the generic Lelong number along E.

The goal of the next result is to extend the above construction of UNA to an α-psh
function on Xℶ, generalizing Lemma 5.1.3 for a more general singularity type. This result
is an analogue of Theorem 6.2 of [BBJ21], the proof here follows the same strategy as in
[BBJ21] but we use directly a regularization result of Demailly, [Dem92, Proposition 3.7],
without passing by the Castelnuovo-Mumford criterion of global generation (remember
that in the projective case α = c1(L)).

Theorem 5.1.4. Let U : R>0 → PSH(ω) be a psh ray of linear growth, then

UNA : Xdiv → R

extends to a α-psh function

Uℶ : Xℶ → R ∪ {−∞}.

Remark 5.1.5. By Theorem 4.3.7 if such an extension exists it is unique.

Proof of Theorem 5.1.4. We will show that there exists a sequence φm ∈ H(α) such that:

(1) (φm)m is decreasing
(2) φm(vE)↘ UNA(vE) for every vE ∈ (X × P1)divC∗

Hence Uℶ(v)
.
= limφm(v) will be the desired function.

By [Dem92, Proposition 3.7], there exists a sequence of S1-invariant functions:

Vm : X ×D1−ϵ ⊆ X ×D→ R ∪ {−∞},
that we can suppose ω-psh, for D1−ϵ the disk of radius 1− ϵ, having analytic singularities

of type J (mU)
1
m .

Therefore, Um
.
= max{Vm, log|τ |} is ω-psh, and has analytic singularities of type (am)

1
m

for am
.
= J (mU) · OX×P1 + (tm), a flag ideal.

Moreover, if we let µm : Xm → X×P1 be the test configuration given by the normalized
blow-up of X ×P1 along am, and Em ⊆ Xm be the exceptional divisor, then the function
Um ◦ µm:

(1) is µ∗mω-psh;
(2) has divisorial singularities along 1

mEm.
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Hence, Um is a psh ray L∞-compatible with 1
mEm, and by Lemma 5.1.3

φm
.
= Uℶ

m = φam

is α-psh.
The item (ii) of Proposition 3.7 of [Dem92] gives us that the Lelong numbers of Vm

along divisors over the central fiber X × {0} approach the Lelong numbers of U over the
same divisors, in particular, the Lelong numbers of Um have the same property. Thus in
non-archimedean terms:

φm|Xdiv → UNA.

Moreover, by the subadditivity of multiplier ideals –like in [BBJ21, Lemma 5.7]– the
sequence (φ2m)m is decreasing, concluding the proof. □

Now, we will prove a result in the converse direction of the above theorem. For that
we remember the following definition:

Definition 5.1.6. A psh geodesic ray U in PSH(ω) is maximal if for every other geodesic
ray V with U0 ≥ V0 and Uℶ ≥ V ℶ we have Us ≥ Vs for every s ∈ R≥0.

Maximal geodesic rays are in correspondence with the non-archimedean potentials of
finite energy, as we will see in the next theorem, an analogue of [BBJ21, Theorem 6.6] in
the Kähler setting.

Theorem 5.1.7. Let φ ∈ E1(α) be a non-archimedean potential, and u ∈ E1(ω) a refer-
ence metric, then there exists a unique maximal geodesic ray U : [0,+∞[→ E1(ω) starting
at u, such that:

Uℶ = φ.

Lemma 5.1.8. Let φ ∈ H(α), and X a smooth dominating test configuration with D ∈
VCar(X ) such that φ = φD, and

D + αX is Kähler relatively to P1.

Then,

(i) there exixts a psh ray, starting from u ∈ H(ω), which is C∞-compatible with (X , D).
(ii) The enevlope usc of rays like in (i), is a maximal psh geodesic and is L∞-compatible

with (X , D).

Proof. For (i) see [SD18, Lemma 4.4]. For (ii) we observe that in the terminology of
[Ber16, Proposition 2.7], a positively curved metric ϕ on a test configuration (X ,L),
L = LX+D, it is a psh ray, being locally bounded it is equivalent to ours L∞-compatibility
with (X , D), and

(ddcφ)n+1 = 0

is equivalent –under the positivity condition– of being a psh geodesic. Translating to our
language their proof follows with no change. □

Remark 5.1.9. Let φ ∈ H(α), and U a maximal psh geodesic s.t. Uℶ = φ, like in the
previous lemma. Then by [SD18, Remark 4.11] we have that:

Eω(Ut) = Eω(U0) + t · Eα(φ).

Proof of Theorem 5.1.7. The proof is like the one [BBJ21, Theorem 6.6]. It relies on the
following observations:

• If u ∈ H(ω), and φ ∈ H(α), we apply Lemma 5.1.8, and get a maximal geodeisc
ray connecting u and φ.
• Now, if u ∈ E1(ω), and φ ∈ E1(α), we can take “smoothing” decreasing sequences
φm ∈ H, and um ∈ H(ω).
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• Using the first point there exists maximal geodesic ray, Um,s, uniting um and φm.
• By maximality Um+1 ≤ Um, and hence there exists the limit limUm(x), which we
will denote by U(x).
• Since the energy is affine on these maximal geodesic rays, by Remark 5.1.9, and
decreasing on decreasing sequences, we have an uniform lower bound on the energy
of Um,s. This implies that Us is of finite energy, and a psh geodesic ray.
• Moreover, from U ≤ Um we get Uℶ ≤ φm, and thus Uℶ ≤ φ, but also the previous
estimate gives us that Eα(U

ℶ) = Eα(φ), and therefore Uℶ = φ.
• Finally, if V is a psh ray of linear growth, such that V0 ≤ u ≤ um, and V ℶ ≤
Uℶ = φ ≤ φm, by maximality of Um we have V ≤ Um, and thus V ≤ U , getting
maximality of U and concluding the proof.

□

5.2. Comparison with Darvas–Xia–Zhang non-archimedean metrics. On [DXZ23]
and [Xia24] the authors develop a theory of non-archimedean plurisubharmonic functions
attached to a compact Kähler manifold.

Their approach is to define a non-archimedean α-psh function as a test curve on the
manifold X. Test curves are the Ross–Witt Nyström transforms of maximal geodesic
rays.

Following the strategy of [DXZ23, Theorem 3.17], together with Theorem 5.1.7, for
β ∈ Pos(X) a Kähler class, one can gets a correspondence from their β-psh functions
of finite energy to ours associating to every I-maximal test curve, ψτ , the “beth” of its
Ross–Witt Nyström transform (ψ̌t):

R1
I(θ) ∋ (ψτ ) 7→ (ψ̌)ℶ ∈ E1(β)

for a smooth Kähler representative θ of β.

Remark 5.2.1. As mentioned before, their theory remains more general since they can
consider the case when β is big. On the other hand, our theory is a direct analogue of the
algebraic setting, which for instance enables us to associate a Monge–Ampère measure to
a β-psh function.

The comparison of β-psh functions –without the energy assumption– is more delicate
even in the algebraic case, and we refer to [DXZ23, Theorem 3.14] for more details.

5.3. Asymptotics for the mixed energy. The goal of this section is to prove Theo-
rem 5.3.4, which will be of central importance to relate the variational cscK problem with
non-archimedean geometry. We begin with an useful lemma.

Lemma 5.3.1. Let φ ∈ E1(α) be a non-archimedean potential, and Us the associated
maximal geodesic ray. Then

V −1
ω

s

∫
X
Us ω

n s→∞−→ φ(vtriv) =

∫
Xℶ

φMAα(0).

Proof. Observe that, since 0 ≤ supUs − V −1
ω

∫
X Us ω

n ≤ Tω, we are left to prove that
supUs

s → φ(vtriv) = supφ. Let φm ∈ H(α) be a decreasing sequence converging to φ, and
Ums the associated maximal geodesic rays. Let’s assume for simlplicity that U0 = 0 = Um0 ,
by [BBJ21, Proposition 1.10] we have that:

supUs = ℓ · s, supUms = ℓm · s,

for some real number ℓ ∈ R.



A NON-ARCHIMEDEAN THEORY OF COMPLEX SPACES AND THE CSCK PROBLEM 49

By Theorem B of [SD18], it follows that ℓm = supφm = φm(vtriv), hence

ℓ =
supUs
s

↙ supUms
s

= φm(vtriv)↘ φ(vtriv),

concluding the proof. □

We will now recall Theorem 3.6 from [BJ23] that will be useful later. Here we will
state (and use) only the complex analytic version of the theorem. Keep in mind that the
same result –in its appropriate formulation– holds in our non-archimedean case, as all the
synthetic theory of Boucksom–Jonsson.

Lemma 5.3.2. Let η0, . . . , ηn be smooth closed (1,1)-forms, and for i = 0, . . . n consider
Ui, Vi ∈ E1(ω) normalized for

∫
Uiω

n = 0 =
∫
Viω

n, then

|(η0, U0) · · · (ηn, Un)−(η0, V0) · · · (ηn, Vn)| ≲ A

(
max
i

Jω(Ui, Vi)
q ·max

i
{Jω(Ui) + Tω}1−q

)
,

for

q
.
= 2−n, A

.
= Vω

∏
i

(1 + 2∥ηi∥ω), and Tω
.
= sup

f∈PSH(ω)∩C∞

{
sup f − V −1

ω

∫
f ωn

}
.

Remark 5.3.3. The quantity Tω is well known to be finite, see for instance [BJ23, The-
orem 1.26].

Proof of Lemma 5.3.2. Whenever U i, V i are smooth functions the result follows from
[BJ23, Theorem 3.6].

In the general case, it suffices to take decreasing sequences of smooth potentials con-
verging to U i and V i respectively, and to observe that the bound proved for smooth
functions is uniform. Thus, since the energy pairing is continuous along decreasing se-
quences, taking limits on both sides of the inequality we conclude.

□

The following statement is a generalization to singular metrics of [SD18, Theorem B],
and of [DR17b, Theorem 4.15] -that after a small modification can be adapted to general
pairings-, and to more general functionals of [Li22, Theorem 4.1] –where they only consider
the twisted Monge–Ampère energy estimate. It is the key ingredient to relate the non-
archimedean pluripotential theory with the complex analytic one, which will be essential
to prove Theorem 6.3.3.

For the next theorem, let η0, . . . , ηk be smooth closed forms.

Theorem 5.3.4 (Slope Formula). Let φ0, . . . , φk ∈ PL, and φk+1, . . . , φn ∈ E1(α). De-
noting by Ui a smooth ray C∞-compatible with φi if i ≤ k, and a maximal geodesic ray
compatible with φi if i > k, we have:

1

s
(η0, U0,s) · · · (ηn, Un,s)

s→∞−→ ([η0], φ0) · · · ([ηn], φn).

Proof. When k = n the result corresponds to [SD18, Theorem B]. We restrict ourselves
to the case when k = n− 1 the general case, when k ≤ n− 1, will be similar.

Moreover, we observe that we can suppose that ηn = ω, otherwise

(ηn, Un,s) · Γs = (ω,Un,s) · Γs − (ω − ηn, 0) · Γs



50 P. MESQUITA-PICCIONE

where Γs
.
= (ω0, U0,s) · · · (ωn−1, Un−1,s). Therefore, denoting [Γ]

.
= ([η0], φ0) · · · ([ηn−1], φn−1),

and applying the result for ηn = ω, we have:

1

s
(ηn, Un,s) · Γs → (α,φn) · [Γ]− ([ω − η], 0) · [Γ]

= ([ηn], φn) · [Γ],

which, by symmetry, implies the result.
Now, let’s prove the result. Let φmn ↘ φn be a decreasing sequence of functions in

H(α), and Umn the associated maximal geodesic ray.
By [SD18, Theorem B]:

1

s
(η0, U0,s) · · · (ηn−1, Un−1,s) · (ω,Umn,s)

s→∞−→ ([η0], φ0) · · · ([ηn−1], φn−1)(α,φ
m
n ), (5.3.1)

and as m → ∞ the right hand side converges to ([η0], φ0) · · · (α,φn). Thus, to complete
the proof we need to check that

lim
m→∞

lim
s→∞

1

s
(η0, U0,s) · · · (ω,Umn,s) = lim

s→∞

1

s
(η0, U0,s) · · · (ω,Un,s).

What we will do next is then to study the difference:

(⋆)s
.
= |(η0, U0,s) · · · (ω,Un,s)− (η0, U0,s) · · ·

(
ω,Umn,s

)
|

= |(η0, U0,s) · · · (0, Un,s − Umn,s)|.

Denoting by ai,s and a
m
n,s the averages

∫
X Ui,s ω

n and
∫
X U

m
i,s ω

n respectively, and by Vi,s
and V m

n,s the normalized potentials

Ui,s − ai,s, Umn,s − amn,s,

we observe that:

(⋆)s = |(η0, V0,s) · · · (ηn−1, Vn−1,s) · (0, Un,s − Umn,s)|

and by the triangle inequality it follows that:

(⋆)s ≤ |(η0, V0,s) · · · (0, Vn,s − V m
n,s)|+ |(η0, V0,s) · · · (0, amn,s − an,s)|

= |(η0, V0,s) · · · (0, Vn,s − V m
n,s)|+ amn,s − an,s.

By the Lemma 5.3.1 we have that taking the slope at infinity and lettingm tend to infinity
the second term vanishes. Next we will focus our attention on the first term.

Note that we can suppose that, for i ≤ n − 1, φi is in H(α) and Ui,s is a smooth psh
ray C∞-compatible with φi. If it is not the case we write φi = ψ′

i − ψ′′
i the difference of

H(α) functions, then we consider U ′
i and U

′′
i psh-rays that are smoothly compatible with

ψ′
i and ψ

′′
i respectively, and the difference

Ui,s
.
= U ′

s − U ′′
s

will be smoothly compatible with φi, and the result follows from linearity of the pairing.
Consequently, it follows, by Lemma 5.3.2, that, for q = 2−n:

|(η0, V0,s) · · · (ω, Vn,s)− (η0, V0,s) · · ·
(
ω, V m

n,s

)
| ≲ Jω(Vn,s, V

m
n,s)

q ·max
i
{Jω(Vi,s) + Tω}1−q

= Jω(Un,s, U
m
n,s)

q ·max
i
{Jω(Ui,s) + Tω}1−q

≲ d1(Un,s, U
m
n,s)

q · (s+ Tω)
1−q,

where the equality follows from the constant invariance of the J functional, and the last
inequality by linear growth of Ui, since it implies that J(Ui,s) ≲ s.

Moreover, we observe that:
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By maximality Un,s ≤ Umn,s, and

d1(Un,s, U
m
n,s) = Eω(U

m
n,s)− Eω(Un,s)

=
(
Eω(U

m
n,1)− Eω(U

m
n,0)
)
s− (Eω(Un,1)− Eω(Un,0)) s+ Cm

=
(
Eω(U

m
n,1)− Eω(Un,1)

)
s−

(
Eω(U

m
n,0)− Eω(Un,0)

)
s+ Cm,

for Cm
.
= Eω(U

m
n,0)− Eω(Un,0).

Therefore, taking the slope at infinity, and lettingm tend to infinity we have the desired
result. □

We have already seen the non-archimedean version of some classical functionals arising
from pluripotential theory. We recall their archimedean –original– version. If ω ∈ K(X)
is a Kähler form, and η is any closed (1, 1)-form we have for u ∈ E1(ω):

Eω(u)
.
=

1

n+ 1
V −1
ω (ω, u)n+1

Eηω(u)
.
= V −1

ω (η, 0) · (ω, u)n

Jω(u)
.
= V −1

ω (ω, u) · (ω, 0)n − Eω(u).

By Theorem 5.3.4, we can relate the above functionals with their non-archimedean
counterpart. If φ ∈ E1(α), and U the associated maximal geodesic ray, we have:

lim
s→∞

Eω(Us)

s
= Eα(φ), lim

s→∞

Eηω(Us)

s
= Eβα(φ), and lim

s→∞

Jω(Us)

s
= Jα(φ),

for β = [η].

6. CscK metrics and the Yau–Tian–Donaldson conjecture

In this section we’ll generalize a result by Chi Li, on the existence of cscK metrics.
Let (X,ω) again be a compact Kähler manifold, and α = [ω] the cohomology class of ω,
η
.
= −Ric(ω) minus the Ricci form of ω, ζ its cohomology class, and s the cohomological

constant
∫
X Ric(ω) ∧ ωn−1.

6.1. The variational approach to the cscK problem. The cscK equation is the
Euler–Langrange equation for the Mabuchi functional :

Mω = sEω + Eηω +Hµ, (6.1.1)

where µ is the probability measure associated to ωn, and Hµ(u) is the entropy of the
Monge–Ampère measure of u with respect to µ.

By the work of Chen–Cheng, [CC21a, CC21b], there exist a unique cscK metric in α
if, and only if, the Mabuchi functional is coercive, that is:

Mω ≥ δ Jω − C

for some δ, C > 0.
What we do next is to define the non-archimedean counterpart of the Mabuchi energy,

Mα, and prove that the coercivity of Mω follows from the –non-archimedean– coercivity
over E1 of Mα.

Before studying the non-archimedean version of the entropy functional, we recall a
Legendre transform formula for the archimedean entropy, if u ∈ E1(ω):

Hµ(u) = sup
f∈C0(X)

{∫
X
f MAω(u)− log

∫
X
exp(f) dµ

}
. (6.1.2)
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6.2. Non-archimedean entropy and the non-archimedean Mabuchi functional.

Definition 6.2.1. Let Hα : E1(α)→ R be defined as follows

Hα(φ)
.
=

∫
Xℶ

AX MAα(φ) (6.2.1)

where AX : Xℶ → [0,+∞] is the log discrepancy function on Xℶ. We call Hα the non-
archimedean entropy functional.

Moreover, in analogy to the Chen–Tian formula of Equation (6.1.1), we define the
non-archimedean Mabuchi functional, Mα : E1(α)→ R, as:

Mα
.
= sEα + Eζα +Hα.

Let X be a snc test configuration and φ ∈ E1(α), we denote by HX
α (φ) the integral:∫

Xℶ
(AX ◦ pX )MAα(φ),

with pX just like in section 3.1.

Proposition 6.2.2. Let ψ ∈ E1(α), consider Vs ∈ E1(ω) the maximal geodesic ray asso-
ciated, then we have

Hα(ψ) ≤ lim
s→+∞

Hµ(Vs)

s
. (6.2.2)

Proof. Let ψ ∈ E1(α), and consider X a snc test configuration. As seen before AX ◦ pX is
a PL function, let’s denote it φ. We can write AX

α in terms of φ:

HX
α (ψ) =

∫
Xℶ

(A ◦ pX )MAα(ψ) =

∫
Xℶ

φMAα(ψ)

= (0, φ) · (α,ψ)n.
Then, by Theorem 5.3.4:

(0, φ) · (α,ψ)n = lim
s→+∞

1

s
(0, Us) · (α, Vs)n, (6.2.3)

for U a smoothly compatible ray with φ.
On the other hand, for f = Us:

1

s
Hµ(Vs) ≥

1

s

{∫
X
fωnVs − log

∫
X
exp(f) dµ

}
=

1

s
(0, Us) · (ω, Vs)n −

1

s
log

∫
X
exp(Us) dµ −→ (0, φ) · (α,ψ)n − 0 = HX

α (ψ)

where in the limit we make use of Lemma 3.11 of [BHJ19], to get:

log

∫
X
exp(Us) dµ = O (log(s)) .

Therefore,

Hα(ψ) = sup
X
HX
α (ψ) ≤ lim

s→+∞

1

s
Hµ(Vs),

concluding the proof. □

Corollary 6.2.3. Let φ ∈ E1(α), and Us ∈ E1(ω) the maximal geodesic ray associated.
Then,

Mα(φ) ≤ lim
s→+∞

Mω(Us)

s
. (6.2.4)

Proof. Follows from Theorem 5.3.4 together with Proposition 6.2.2. □
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6.3. Main theorem.

Proposition 6.3.1 (Theorem 1.2 from [Li22]). Let Us ∈ E1 be a geodesic ray such that
the slope

lim
s→+∞

Mω(Us)

s
< +∞,

then U is maximal.

Proof. The proof goes without change as in the projective setting.
It is based on a local integrability result for the exponential of a difference of psh

functions in the same singularity class, and a clever use of Jenssen’s inequality. For more
details see [Li22, Theorem 1.2]. □

Definition 6.3.2. Let X be a compact Kähler manifold, and α ∈ Pos(X) a Kähler class,
then (X,α) is uniformly K-stable over E1 if there exists δ > 0 such that:

Mα(φ) ≥ δJα(φ), for every φ ∈ E1(α). (6.3.1)

Now, we will prove Theorem A, the main theorem of this paper.

Theorem 6.3.3 (Theorem A). Let (X,α) be a compact Kähler manifold that is uniformly
K-stable over E1. Then, α contains a unique cscK metric.

Proof. By [CC21b] the existence, and uniqueness of a cscK metric is equivalent to the
coercivity of the Mabuchi functional Mω, i.e. the existence of C, δ > 0 such that

Mω ≥ δJω − C.
We will proceed by contradiction.

Suppose that Mω is not coercive, then, by [BBJ21, Li22, CC21b], we can find a geodesic
ray emanating from 0, Us ∈ E1(ω), normalized so that supUs = 0, such that:

lim
s→+∞

1

s
Mω(Us) ≤ 0.

By Proposition 6.3.1, U is maximal, therefore it is associated to a non-archimedean
potential φ ∈ E1(α).

Corollary 6.2.3 gives:

0 ≥ lim
s→+∞

1

s
Mω(Us) ≥ Mα(φ),

but since (X,α) is uniformly K-stable over E1, there exists a δ > 0 such that:

Mα(φ) ≥ δJα(φ) > 0,

yielding a contradiction. □
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Appendix A. Semi-rings and tropical algebras

A.1. Semi-rings.

Definition A.1.1. A triple (S,+, ·) is a commutative semi-ring if the following conditions
hold:

• (S,+) is a commutative monoid, with identity element denoted by 0S
13;

• (S, ·) is a commutative semi-group;
• For every a, b, c ∈ S

a · (b+ c) = (a · b) + (a · c), and 0S · a = 0.

A morphism of semi-rings is a function

ϕ : (S,+, ·)→ (R,+, ·)
mapping 0S to 0R that satisfies

ϕ(a+ b) = ϕ(a) + ϕ(b), and ϕ(a · b) = ϕ(a) · ϕ(b)
Whenever S and R have a multiplicative identity we ask

ϕ(1S) = 1R

We denote the set of morphisms from (S,+, ·) to (R,+, ·) by hom(S,R)

Now some examples

Example A.1.2. (1) Let S
.
= R ∪ {+∞}, considered with min as the sum, and the

usual sum, +, as the semi-ring multiplication is a semi-ring. Here S has a mul-
tiplicative identity given by:

0S = +∞, and 1S = 0

Equivalently, S = (R ∪ {−∞},max,+) is isomorphic to (R ∪ {+∞},min,+).
(2) The subset ([0,+∞],min,+) is also a semi-ring.
(3) Let X be a topological space, (C0(X,R) ∪ {−∞},max,+) is a semi-ring.
(4) Let A be a commutative ring, and denote by I (A) the set of ideals of finite type

of A, then together with the usual sum and multiplication of ideals, I (A) is a
semi-ring with neutral elements given by:

0S = {0}, and 1S = A

A semi-ring S comes equipped with a natural order relation, we say

a ≤ b, if a = b+ a.

Whenever S is unital we denote by S+ the set:

S+
.
= {a ∈ S | a ≥ 1S}

Lemma A.1.3. Let S be a semi-ring with multiplicative unit, then S+ inherits a semi-ring
structure restricting the operations.

Proof. Let a, b ∈ S+, then 1S = a+1S and 1S = b+1S , hence a+ b+1S = a+(b+1S) =
a+ 1S = 1S . Moreover

a · b+ 1S = a · b+ 1S + b = (a+ 1S) · b+ 1S = 1S · b+ 1S = b+ 1S = 1S

□

Example A.1.4. Using the notation of Example A.1.2 we have:

13A monoid is a semi-group with an identity element.
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(1) I (A)+ = I (A), since for every I ∈ I (A) we have

I +A = A

(2) If S = C0(X,R) ∪ {+∞}, then
S+ = C0(X,R+) ∪ {+∞}

Definition A.1.5. A semi-ring (S,+, ·) is idempotent if for every a ∈ S
a+ a = a

Remark A.1.6. Every semi-ring of Example A.1.2 is idempotent.

The order relation for idempotent semi-rings reads slightly more general, a ≤ b if, and
only if, we can decompose

a = b+ c

for some c ∈ S.

A.2. Tropical spectrum and restrictions. Let S be a semi-ring, we recall that the
tropical spectrum of S is the set

TropSpecS
.
= hom(S,R ∪ {+∞})

with the pointwise convergence topology.

Lemma A.2.1. Let S be a unital semi-ring, the restriction induces a map

TropSpecS → hom(S+, [0,+∞])

Proof. Indeed, let χ ∈ TropSpec, and f ∈ S+, we then have that 1S + f = 1S , and hence

0 = χ(1S) = χ(f + 1S) = min{χ(f), χ(1S)} ≤ χ(f)
□

Corollary A.2.2. Let S be a semi-ring such that S = S+, then

TropSpecS = hom(S, [0,+∞])

□

Definition A.2.3. We define a R-tropical algebra, A, as a R-vector space together with
an operation {·, ·} such that S = (A ∪ {∞}, {·, ·},+) is a semi-ring, with

0S =∞, and 1S = 0

satisfying
0 ≤ f =⇒ f ≤ λf

for λ ≥ 1 a real number.

Remark A.2.4. Tropical algebras are unital, and admit multiplicative inverses.
Moreover, if A ∪ {∞} is idempotent then every element of A can be written as a

difference of elements of A+. Indeed, if f ∈ A we can write

f = −{−f, 0} − (−{f, 0})
and we have

{0,−f} = {0, {0,−f}} =⇒ 0 = {−{0,−f}, 0} (A.2.1)

which implies 0 ≤ −{0,−f} and therefore −{0,−f} ∈ A+, we proceed similarly for
−{f, 0}.

Example A.2.5. The two main examples are:

• R is a tropical algebra.
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• C0(K,R) is a tropical algebra.

Lemma A.2.6. Let A be an idempotent tropical algebra, then

TropSpec(A ∪ {∞}) = {φ ∈ A∗ | φ({f, g}) = max{φ(f), φ(g)}} ,

where A∗ denotes the algebraic dual.

Proof. For a max commuting linear functional φ ∈ A∗, we can define φ(∞) as +∞ and
φ ∈ TropSpec(A ∪ {∞}).

On the other hand, if χ ∈ TropSpec(A ∪ {∞}), we observe that taking f ∈ A we have

0R = χ(0A) = χ(f + (−f)) = χ(f) + χ(−f)

getting that χ is finite and Q-linear on A.
We are left to prove that χ is R-linear. Indeed if λ ∈ R>0, pn ∈ Q>0 an increasing

sequence, qn ∈ Q>0 a decreasing sequence, both converging to λ, and f ∈ A+, we then
have:

0 ≤ pnf ≤ pn+1f ≤ λf ≤ qn+1f ≤ qnf,

thus getting

pnχ(f) ≤ χ(λf) ≤ qnχ(f),

taking the limit we get:

χ(λf) = λχ(f).

Applying Remark A.2.4 and the Q-linearity we get the desired result. □

A.3. PL spaces. Let K be a compact Hausdorff topological space.

Definition A.3.1. A PL structure on K is a Q-linear subspace of the set of continuous
functions, PL(K) ⊆ C0(K,R), such that:

• It separates points;
• It contains all the Q-constants;
• It is stable by max.

We refer to the pair (K,PL(K)) as a PL space.
A map f : K1 → K2 is a morphism of PL spaces if it is continuous and

f∗ : C0(K2,R)→ C0(K1,R)

maps PL(K2) to PL(K1). Moreover, it is an ismorphism of PL structures if the induced
map f∗ : PL(K2)→ PL(K1) is bijective.

Remark A.3.2. If PL(K) is a PL structure on K, then (PL,max,+) is an idempotent
semiring, PLR(K)

.
= PL(K) ⊗ R is a subtropical algebra of C0(K,R), and by Proposi-

tion 3.1.3

K ≃ (TropSpecPLR(K)) \ {0}/R>0.

In particular, an isomorphism of PL structures f : K1 → K2 is also a homeomorphism.
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Appendix B. Monomial valuations and Lelong–Kiselman numbers

B.1. The Lelong–Kiselman number. Let ∆ ⊆ Cn be the unit polydisk centered at 0,
T
.
= (S1)n the compact torus, and w ∈ Rn+. Consider φ : ∆∗ → R≤0 a psh function.

Definition B.1.1. For w ∈ (R+)
n the Lelong-Kiselman number of φ at 0 with weight w

is given by

νw(φ, 0)
.
= sup

{
δ > 0

∣∣ ∃U open neighborhood of 0, φ(z) ≤ δmax
wi ̸=0

log|zi|
wi

, ∀z ∈ U
}

More generally, given a complex manifold X, p ∈ X and ψ : X → R≤0∪{−∞} a quasi-psh
function on X we can define νw(ψ, p) similarly.

We will show now that if p ∈ ∩wi ̸=0{zi = 0} ⊆ ∆, then νw(φ, 0) = νw(φ, p). To do that,
we’ll see that it is locally independent of p, more precisely we’ll show that if there exists

a open neighborhood U of 0, such that φ(z) ≤ νw(φ, 0)minwi ̸=0
log|zi|
wi

for every z ∈ U ,
then the inequality

φ(z) ≤ νw(φ, 0)max
wi ̸=0

log|zi|
wi

holds for every z ∈ ∆.
For that, define

φ̃ : ∆∗ → R≤0

z 7→ sup
ξ∈T

φ(ξ · z)

By the maximum principle φ̃(z) = sup|αi|≤1 φ(α1z1, . . . , αnzn).

Now, since φ̃ is T -invariant, there exists a convex function χ : (R+)
n → R≤0, such that

φ̃(z) = χ (− log|z1|, . . . ,− log|zn|) (B.1.1)

where χ is decreasing in each variable, in particular it is also decreasing on rays, i.e. for
every w ∈ (R+)

n the map t 7→ χ(t · w) is decreasing.
Now, since every bounded above decreasing convex function has a finite slope at infinity

we can define:

χ′
∞(w)

.
= lim

t→+∞

χ(tw)

t
. (B.1.2)

It is clear that χ′
∞(w) = −νw(φ, 0).

We have, for t > 0, χ(tw)−χ(0)t ≤ χ′
∞(w), hence

χ(tw) ≤ t · χ′
∞(w) + χ(0) ≤ t · χ′

∞(w) (B.1.3)

For t = −maxwi ̸=0
log|zi|
wi

= minwi ̸=0
− log|zi|
wi

gives us the following inequality:

φ(z) ≤ φ̃(z) = χ(− log|z1|, . . . ,− log|zn|) ≤

χ(tw) ≤ χ′
∞(w) min

wi ̸=0

− log|zi|
wi

= νw(φ, 0)max
wi ̸=0

log|zi|
wi

(B.1.4)

for every z ∈ ∆.
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B.2. An analytic interpretation of monomial valuations. Now, let B =
∑

i∈I Bi
be a reduced snc divisor, Z a connected component of the intersection, and p ∈ Z ⊆ X.

Let I ∈ IX , and f = log|I| a quasi-psh function f : X → R∪{−∞}, with singularities
along I.

Then the monomial valuation defined by Equation (2.3.1) satisfies:

vw,Z,p(I) = νw(f, p). (B.2.1)

In particular, by the discussion the previous section, the right hand side does not depend
on locally on p ∈ Z. Hence the left hand side also does not depend locally on p ∈ Z,
therefore retrieving Proposition 2.3.4.

Appendix C. Basic linear algebra of bilinear forms

Lemma C.0.1. Let V be a real finite dimensional vector space, and B : V × V → R a
symmetric bilinear form, such that

(1) There exists a base ei ∈ V such that B(ei, ej) ≥ 0
(2) There exist an element on the kernel, v =

∑
i v
iei ∈ V , that is for every i:

B(v, ei) = 0,

such that vj > 0 for every j.

Then B is negative semi-definite.

Proof. After changing bases we can suppose that v =
∑

i ei, and then the second item
reduces to

B(ei, ei) = −
∑
j ̸=i

B(ej , ei)

and thus taking x =
∑

j x
jej ∈ V ,

B(x, x) =
∑
i

(xi)2B(ei, ei) +
∑
i ̸=j

xixjB(ei, ej)

=
∑
i ̸=j

(
xixj − (xi)2

)
B(ei, ej)

=
∑
i ̸=j

(
xixj − (xj)2

)
B(ei, ej)

where the last equality is given by symmetry. Thus, by changing the roles of i and j,

2B(x, x) = −
∑
i,j

(
(xi)2 + (xj)2

)
B(ei, ej) ≤ 0

we get the desired result. □

Appendix D. A synthetic comment

In this paper we assume the synthetic pluripotential theory developed in [BJ23], for
Xℶ, where X is a compact Kähler manifold.

In fact,

• The set Xℶ is underlying the compact Hausdorff topological space.
• The “smooth” test functions D are the set PLR(X

ℶ) ≃ lim−→X VCarR(X ), which is

dense in C0(Xℶ,R) by Proposition 1.4.4.
• The vector space Z in our case corresponds to lim−→X H

1,1(X/P1).
• The ddc : D → Z operator assigns:

PLR ∋ φD 7→ [c1 (OX (D))]
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• For β ∈ Z
β ≥ 0,

if βX ∈ Nef(X/P1) for some determination βX .
• The dimension of Xℶ is defined to be dimX.
• The assignment Zn → C0(Xℶ)∨, (β1, . . . , βn) 7→ β1 ∧ · · · ∧ βn, is given by

C0(Xℶ) ∋ f 7→ inf {(0, φ) · (0, β1) · · · (0, βn) | φ ≥ f} ,
that satisfies all the required properties by all the results on Section 4.2, in par-
ticular the version of Zariski’s Lemma of Lemma 4.2.6 gives the seminegativity
of

D ×D ∋ (φ,ψ) 7→
∫
Xℶ

φddcψ ∧ β1 ∧ · · · ∧ βn,

for βi ≥ 0.



60 P. MESQUITA-PICCIONE

References
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[BHJ17] Sébastien Boucksom, Tomoyuki Hisamoto, and Mattias Jonsson. Uniform K-stability, Duister-
maat–Heckman measures and singularities of pairs. Annales de l’Institut Fourier, 67(2):743–
841, 2017.
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[MN15] Mircea Mustaţă and Johannes Nicaise. Weight functions on non-Archimedean analytic spaces
and the Kontsevich-Soibelman skeleton. Algebr. Geom., 2(3):365–404, 2015.
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